Skip to main content
Log in

Low-viscosity lattice gases

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A class of lattice gas models are studied which are variants of the FCHC model. The aim is to achieve the highest possible Reynolds coefficient (inverse dimensionless viscosity) for efficient simulations of the three-dimensional incompressible Navier-Stokes equations. The models include an arbitrary number of rest particles and violation of semi-detailed balance. Within the framework of the Boltzmann approximation exact expressions are obtained for the Reynolds coefficients. The minimization of the viscosity is done by solving a Hitchcock-type optimization problem for the fine tuning of the collision rules. When the number of rest particles exceeds one, there is a range of densities at which the viscosity takes negative values. Various optimal models with up to 26 bits per node have been implemented on a CRAY-2 and their true transport coefficients have been measured with good accuracy. Fairly large discrepancies with Boltzmann values are observed when semi-detailed balance is violated; in particular, no negative viscosity is obtained. Still, the best model has a Reynolds coefficient of 13.5, twice that of the best previously implemented model, and thus is about 16 times more efficient computationally. Suggestions are made for further improvements. It is proposed to use models with very high Reynolds coefficients for sub-grid-scale modeling of turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice gas automata for the Navier-Stokes equation,Phys. Rev. Lett. 56:1505–1508 (1986).

    Article  ADS  Google Scholar 

  2. J. Hardy, Y. Pomeau, and O. de Pazzis, Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions,J. Math. Phys. 14:1746–1759 (1973).

    Article  ADS  Google Scholar 

  3. U. Frisch, D. d'Humiéres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensions,Complex Systems 1:649–707 (1987) [reprinted inLecture Notes on Turbulence, I. R. Herring and J. C. McWilliams, eds. (World Scientific, 1989), pp. 297–371].

    MathSciNet  MATH  Google Scholar 

  4. S. Wolfram, Cellular automaton fluids 1: Basic theory,J. Stat. Phys. 45:471–526 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. D. d'Humiéres and P. Lallemand, Numerical simulations of hydrodynamics with lattice gas automata in two dimensions,Complex Systems 2:599–632 (1987).

    Google Scholar 

  6. D. d'Humiéres, P. Lallemand, and U. Frisch, Lattice gas models for 3-D hydrodynamics,Europhys. Lett. 2:291–297 (1986).

    Article  ADS  Google Scholar 

  7. J.-P. Rivet, M. Hénon, U. Frisch, and D. d'Humiéres, Simulating fully three-dimensional external flow by lattice gas methods,Europhys. Lett. 7:231–236 (1988).

    Article  ADS  Google Scholar 

  8. M. Hénon, Isometric collision rules for the four-dimensional FCHC lattice gas,Complex Systems 1:475–494 (1987).

    MathSciNet  MATH  Google Scholar 

  9. J.-P. Rivet, Simulation d'écoulements tri-dimensionnels par la méthode des gaz sur réseaux: premiers résultats,C. R. Acad. Sci. Paris II 305:751–756 (1987).

    MathSciNet  Google Scholar 

  10. M. Hénon, Optimization of collision rules in the FCHC lattice gas, and addition of rest particles, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, 1989), pp. 146–159.

  11. J.-P. Rivet, Hydrodynamique par la méthode des gaz sur réseaux, Thèse, Université de Nice (1988).

  12. B. Dubrulle, Method of computation of the Reynolds number for two models of lattice gas involving violation of semi-detailed balance,Complex Systems 2:577–609 (1988).

    MathSciNet  MATH  Google Scholar 

  13. M. Hénon, Viscosity of a lattice gas,Complex Systems 1:763–789 (1987).

    MathSciNet  MATH  Google Scholar 

  14. J. A. Somers and P. C. Rem, The construction of efficient collision tables for fluid flow computations with cellular automata, inCellular Automata and the Modelling of Complex Systems (Springer, 1989).

  15. S. A. Orszag and V. Yakhot, Reynolds number scaling of cellular automaton hydrodynamics,Phys. Rev. Lett. 56:1691–1693 (1986).

    Article  ADS  Google Scholar 

  16. D. H. Rothman, Negative-viscosity lattice gases,J. Stat. Phys. 56:517–524 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Chen, S. Chen, G. D. Doolen, Y. C. Lee, and H. Rose, Multithermodynamic phase lattice gas automata incorporating interparticle potentials,Phys. Rev. A 40:2850–2853 (1989).

    Article  ADS  Google Scholar 

  18. C. H. Papadimitriou and K. Steiglitz,Combinatorial Optimization: Algorithms and Complexity (Prentice-Hall, Englewood Cliffs, New Jersey, 1982).

    MATH  Google Scholar 

  19. U. Frisch, Où en est la turbulence développée?,Phys. Scripta 9:137–146 (1985).

    Article  ADS  Google Scholar 

  20. S. Zaleski, Weakly compressible fluid simulations at high Reynolds numbers, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, 1989), pp. 384–394.

  21. G. R. MacNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata,Phys. Rev. Lett. 61:2332–2335 (1988).

    Article  ADS  Google Scholar 

  22. F. J. Higuera, Lattice gas simulation based on the Boltzmann equation, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, 1989), pp. 162–177.

  23. A. Patera, Private communication (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubrulle, B., Frisch, U., Hénon, M. et al. Low-viscosity lattice gases. J Stat Phys 59, 1187–1226 (1990). https://doi.org/10.1007/BF01334747

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01334747

Key words

Navigation