Skip to main content
Log in

Quantum Monte Carlo simulation of the dynamics of the spin-boson model

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

This paper presents the results of stationary-phase Monte Carlo simulations for the dynamics of the spin-boson problem. The problem of alternating weights ubiquitous in dynamical simulations has been solved using discretized path-integral simulations in conjunction with stationary-phase filtering techniques. Our computation covers the bulk of the parameter space, including non-zero bias and frequency-dependent dissipation. Besides a comparison with analytic predictions, we present some new results. For sub-Ohmic dissipation, the dynamics at low temperatures depends significantly on the initial preparation. In the Ohmic regime 1/2<K<1, whereK is Kondo's dimensionless coupling strength, we find significant deviations from the predictions of the non-interacting blip approximation at long times and low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Rev. Mod. Phys.59, 1 (1987)

    Google Scholar 

  2. Wipf, H., Steinbinder, D., Neumaier, K., Gutsmiedl, P., Magerl, A., Dianoux, A.J.: Europhys. Lett.4, 1379 (1987);

    Google Scholar 

  3. Steinbinder, D., Wipf, H., Magerl, A., Richter, D., Dianoux, A.J., Neumaier, K.: Europhys. Lett.6, 535 (1988)

    Google Scholar 

  4. Kondo, J.: Physica125 B, 279 (1984); ibid Kondo, J.: Europhys. Lett.126, 377 (1984)

    Google Scholar 

  5. Kondo, J.: In: Fermi surface effects. Kondo, J., Yoshimori, A. (eds.). Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  6. Grabert, H., Linkwitz, S., Dattagupta, S., Weiss, U.: Europhys. Lett.2, 631 (1986);

    Google Scholar 

  7. Dattagupta, S., Grabert, H., Jung, R.: J. Phys. C1, 1405 (1989);

    Google Scholar 

  8. Grabert, H., Wipf, H.: Festkörperprobleme30, 1 (1990)

    Google Scholar 

  9. Tsvelick, A.M., Wiegmann, P.B.: Adv. Phys.32, 453 (1983)

    Google Scholar 

  10. Weiss, U., Grabert, H., Linkwitz, S.: J. Low Temp. Phys.68, 213 (1987)

    Google Scholar 

  11. Ambegaokar, V., Eckern, U., Schön, G.: Phys. Rev. Lett.48, 1745 (1982);

    Google Scholar 

  12. Schön, G., Zaikin, A.D.: Phys. Rep.198, 237 (1990)

    Google Scholar 

  13. Weiss, U., Wollensak, M.: Phys. Rev. Lett.62, 1663 (1989)

    Google Scholar 

  14. Doll, J.D., Freeman, D.L., Gillan, M.J.: Chem. Phys. Lett.143, 277 (1988);

    Google Scholar 

  15. Doll, J.D., Beck, T.L., Freeman, D.L.: J. Chem. Phys.89, 5753 (1988);

    Google Scholar 

  16. Beck, T.L., Doll, J.D., Freeman, D.L.: J. Chem. Phys.90, 3181 (1989)

    Google Scholar 

  17. Silver, R.N., Sivia, D.S., Gubernatis, J.E.: In: Quantum simulations of condensed matter phenomena. Doll, J.D., Gubernatis, J.E. (eds.). Singapore. World Scientific 1990

    Google Scholar 

  18. Mak, C.H., Chandler, D.: Phys. Rev. A44, 2352 (1991)

    Google Scholar 

  19. Mak, C.H.: Phys. Rev. Lett.68, 899 (1992)

    Google Scholar 

  20. Dorsey, A.T., Fisher, M.P.A., Wartak, M.S.: Phys. Rev. A33, 1117 (1986)

    Google Scholar 

  21. Carmeli, B., Chandler, D.: J. Chem. Phys.82, 3400 (1985)

    Google Scholar 

  22. Mahan, G.D.: Many-particle physics. New York: Plenum Press 1981

    Google Scholar 

  23. Flynn, C.P., Stoneham, A.M.: Phys. Rev. B1, 3966 (1970)

    Google Scholar 

  24. Grabert, H., Schramm, P., Ingold, G.-L.: Phys. Rep.168, 115 (1988)

    Google Scholar 

  25. Feynman, R.P., Vernon, F.L.: Ann. Phys. (N. Y.)24, 118 (1963)

    Google Scholar 

  26. Görlich, R., Weiss, U.: Phys. Rev. B38, 5245 (1988)

    Google Scholar 

  27. Since 107-1, the matrixM can be replaced byM+a 0 I in (4.19), wherea 0 is arbitary. For the purpose of the Hubbard-Stratonovich transformation we choosea 0 such that ReM is positive definite [12]

    Google Scholar 

  28. Another equivalent approach would be to write (4.19) as a functional integral with continuous variables σ j , where the constraints σ j = ± 1 are imposed by insertions of δ-functions,\(\prod\limits_j {\delta (\sigma _j^2 - 1)} \). Then, by using the Fourier integral representation for the δ-function, auxiliary fields,s j are introduced, while the σ-variables can be integrated out exactly

  29. Sassetti, M., Weiss, U.: Phys. Rev. A41, 5383 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egger, R., Weiss, U. Quantum Monte Carlo simulation of the dynamics of the spin-boson model. Z. Physik B - Condensed Matter 89, 97–107 (1992). https://doi.org/10.1007/BF01320834

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320834

Keywords

Navigation