Skip to main content
Log in

Generalized mean-field approach to simulate the dynamics of large open spin ensembles with long range interactions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We numerically study the collective coherent and dissipative dynamics in spin lattices with long range interactions in one, two and three dimensions. For generic geometric configurations with a small spin number, which are fully solvable numerically, we show that a dynamical mean-field approach based upon a spatial factorization of the density operator often gives a surprisingly accurate representation of the collective dynamics. Including all pair correlations at any distance in the spirit of a second order cumulant expansion improves the numerical accuracy by at least one order of magnitude. We then apply this truncated expansion method to simulate large numbers of spins from about ten in the case of the full quantum model, a few thousand, if all pair correlations are included, up to several ten-thousands in the mean-field approximation. We find collective modifications of the spin dynamics in surprisingly large system sizes. In 3D, the mutual interaction strength does not converge to a desired accuracy within the maximum system sizes we can currently implement. Extensive numerical tests help in identifying interaction strengths and geometric configurations where our approximations perform well and allow us to state fairly simple error estimates. By simulating systems of increasing size we show that in one and two dimensions we can include as many spins as needed to capture the properties of infinite size systems with high accuracy. As a practical application our approach is well suited to provide error estimates for atomic clock setups or super radiant lasers using magic wavelength optical lattices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heisenberg, Zeit. Phys. 49, 619 (1928)

    Article  ADS  MATH  Google Scholar 

  2. H.B. Thacker, Rev. Mod. Phys. 53, 253 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.E. Fisher, Am. J. Phys. 32, 343 (1964)

    Article  ADS  Google Scholar 

  4. F. Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Van Dongen, D. Vollhardt, Phys. Rev. Lett. 65, 1663 (1990)

    Article  ADS  Google Scholar 

  6. P.A. Pearce, C.J. Thompson, Commun. Math. Phys. 58, 131 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. K. Byczuk, D. Vollhardt, Phys. Rev. B 77, 235106 (2008)

    Article  ADS  Google Scholar 

  9. E. Altman, W. Hofstetter, E. Demler, M.D. Lukin, New J. Phys. 5, 113 (2003)

    Article  ADS  Google Scholar 

  10. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, U. Sen, Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  11. A. Micheli, G. Brennen, P. Zoller, Nat. Phys. 2, 341 (2006)

    Article  Google Scholar 

  12. Z. Ficek, R. Tanas, S. Kielich, Optica Acta 33, 1149 (1986)

    Article  Google Scholar 

  13. H. Zoubi, H. Ritsch, Adv. At. Mol. Opt. Phys. 62, 171 (2013)

    Article  Google Scholar 

  14. H. Zoubi, H. Ritsch, Europhys. Lett. 87, 23001 (2009)

    Article  ADS  Google Scholar 

  15. C. Gardiner, P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics (Springer Science & Business Media, 2004), Vol. 56

  16. L. Pollet, J. Picon, H. Büchler, M. Troyer, Phys. Rev. Lett. 104, 125302 (2010)

    Article  ADS  Google Scholar 

  17. M. Takamoto, F.L. Hong, R. Higashi, H. Katori, Nature 435, 321 (2005)

    Article  ADS  Google Scholar 

  18. A.D. Ludlow et al., Science 319, 1805 (2008)

    Article  ADS  Google Scholar 

  19. X. Zhang, M. Bishof, S. Bromley, C. Kraus, M. Safronova, P. Zoller, A. Rey, J. Ye, Science 345, 1467 (2014)

    Article  ADS  Google Scholar 

  20. L. Ostermann, H. Zoubi, H. Ritsch, Opt. Express 20, 29634 (2012)

    Article  ADS  Google Scholar 

  21. T. Maier, S. Kraemer, L. Ostermann, H. Ritsch, Opt. Express 22, 13269 (2014)

    Article  ADS  Google Scholar 

  22. M. Martin, M. Bishof, M. Swallows, X. Zhang, C. Benko, J. Von-Stecher, A. Gorshkov, A. Rey, J. Ye, Science 341, 632 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Gopalakrishnan, B. Lev, P. Goldbart, Bull. Am. Phys. Soc. (2012)

  24. L. Ostermann, H. Ritsch, C. Genes, Phys. Rev. Lett. 111, 123601 (2013)

    Article  ADS  Google Scholar 

  25. J.G. Bohnet, Z. Chen, J.M. Weiner, D. Meiser, M.J. Holland, J.K. Thompson, Nature 484, 78 (2012)

    Article  ADS  Google Scholar 

  26. K. Henschel, J. Majer, J. Schmiedmayer, H. Ritsch, Phys. Rev. A 82, 033810 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krämer, S., Ritsch, H. Generalized mean-field approach to simulate the dynamics of large open spin ensembles with long range interactions. Eur. Phys. J. D 69, 282 (2015). https://doi.org/10.1140/epjd/e2015-60266-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60266-5

Keywords

Navigation