Skip to main content
Log in

Phase separation in colloidal suspensions induced by a solvent phase transition

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A colloidal suspension of macroparticles in a solvent is considered near a solvent first-order phase transition. The solvent phase transition is described by a Ginzburg-Landau model with a one-component order parameter which is coupled to the macroparticles coordinates. Wetting of the macroparticle surface by one of the two coexisting phases can induce phase separation of the colloidal particles. This phase separation is first explained by simple thermodynamic arguments and then confirmed by computer simulation of the Ginzburg-Landau model coupled to the macroparticles. Furthermore a topological diagnosis of the interface between the stable and metastable phase is given near phase separation and possible experimental consequences of the phase separation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For recent reviews, see P. N. Pusey, in “Liquids, Freezing and the Glass Transition”, edited by J. P. Hansen, D. Levesque and J. Zinn-Justin, North Holland, Amsterdam, (1991).

    Google Scholar 

  2. E. J. W. Verwey and J. T. G. Overbeek, “Theory of the Stability of Lyophobic Colloids”, Elsevier, Amsterdam, (1948).

    Google Scholar 

  3. S. Asakura, F. Oosawa, J. Chem. Phys.22, 1255 (1954).

    Google Scholar 

  4. A. Vrij, Pure and Applied Chem.48, 471 (1976).

    Google Scholar 

  5. E. J. Meijer, D. Frenkel, Phys. Rev. Lett.67, 1110 (1991).

    Google Scholar 

  6. E. J. Meijer, D. Frenkel, J. Chem. Phys.100, 6873 (1994).

    Google Scholar 

  7. H. N. W. Lekkerkerker, W. C.-K. Poon, P. N. Pusey, A. Stroobants, P. B. Warren, Europhys. Lett.20, 559 (1992).

    Google Scholar 

  8. T. Biben, J. P. Hansen, Phys. Rev. Lett.66, 2215 (1991).

    Google Scholar 

  9. T. Biben, J. P. Hansen, J. Phys. Condensed Matter3, F65 (1991).

    Google Scholar 

  10. J. S. van Duijneveldt, A. W. Heinen, H. N. W. Lekkerkerker, Europhys. Lett.21, 369 (1993).

    Google Scholar 

  11. J. M. Victor, J. P. Hansen, J. Physique45, L 307 (1985).

    Google Scholar 

  12. J. M. Victor, J. P. Hansen, J. Chem. Soc. Faraday Trans. 281, 43 (1985).

    Google Scholar 

  13. M. J. Stevens, M. O. Robbins, Europhys. Lett.12, 81 (1990).

    Google Scholar 

  14. L. Belloni, to be published.

  15. D. Beysens, J. M. Petit, T. Narayanan, A. Kumar, M. L. Broide, Ber. Bunsenges. Phys. Chem.98, 382 (1994).

    Google Scholar 

  16. M. Krech, “The Casimir Effect in Critical Systems”, World Scientific, Singapore, 1994.

    Google Scholar 

  17. For a review see: H. Löwen, Phys. Reports,237, 249 (1994).

    Google Scholar 

  18. H. Löwen, T. Beier, H. Wagner, Z. Phys. B79, 109 (1990).

    Google Scholar 

  19. S. Dietrich, in: Phase Transitions and Critical Penomena, Vol. 12, eds. C. Domb, J. Lebowitz, Academic Press, London, 1987, p. 1.

    Google Scholar 

  20. L. J. D. Frink, F. van Swol, J. Chem. Phys.100, 9106 (1994).

    Google Scholar 

  21. P. Attard, C. P. Ursenbeck, G. N. Patey, Phys. Rev. A45, 7621 (1992).

    Google Scholar 

  22. J. P. Hansen, Phys. Rev. A2, 221 (1970).

    Google Scholar 

  23. G. Pastore, E. M. Waisman, Mol. Phys.61, 849 (1987).

    Google Scholar 

  24. R. Car, M. Parrinello, Phys. Rev. Lett.55, 2471 (1985).

    Google Scholar 

  25. H. Löwen, P. A. Madden, J. P. Hansen, Phys. Rev. Lett.68, 1081 (1992).

    Google Scholar 

  26. H. Löwen, J. P. Hansen, P. A. Madden, J. Chem. Phys.98, 3275 (1993).

    Google Scholar 

  27. M. Pearson, E. Smargiassi, P. A. Madden, J. Phys. Conden. Matter5, 3221 (1993).

    Google Scholar 

  28. H. Löwen, G. Kramposthuber, Europhys. Lett.23, 673 (1993).

    Google Scholar 

  29. J. Hoshen, R. Kopelman, Phys. Rev. B14, 3428 (1976).

    Google Scholar 

  30. D. Stauffer, Introduction to Percolation Theory, Taylor and Francis, London, 1985.

    Google Scholar 

  31. K. Mecke, H. Wagner, J. Stat. Phys.64, 843 (1991).

    Google Scholar 

  32. G. Gompper, M. Kraus, Phys. Rev. E47, 4301 (1993).

    Google Scholar 

  33. D. Beysens, D. Estéve, Phys. Rev. Lett.54, 2123 (1985).

    Google Scholar 

  34. V. Gurfein, D. Beysens, F. Perrot, Phys. Rev. A40, 2543 (1989).

    Google Scholar 

  35. J. S. van Duijneveldt, D. Beysens, J. Chem. Phys.94, 5222 (1991).

    Google Scholar 

  36. T. Narayanan, A. Kumar, E. S. R. Gopal, D. Beysens, P. Guenoun, G. Zalczer, Phys. Rev. E48, 1989 (1993).

    Google Scholar 

  37. T. Palberg, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löwen, H. Phase separation in colloidal suspensions induced by a solvent phase transition. Z. Physik B - Condensed Matter 97, 269–279 (1995). https://doi.org/10.1007/BF01307477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307477

PACS

Navigation