Skip to main content
Log in

Liquid–Gas Equilibrium in Nanoparticle Network-Forming Systems

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Mechanisms of phase formation in solutions of nano- and microparticles with anisotropic effective interactions have actively been discussed in the last years. Possible types of miscibility gaps for colloidal suspensions with anisotropic interaction have been analyzed within a statistical model including the variation of the reactivity of particles without a priori assumptions on the structure of clusters. It has been shown that the variation of model parameters allows the description of all observed miscibility gaps within a unified formalism. In particular, diagrams with the homogeneity region at zero temperature, closed loops, a lower critical point, and infinite immiscibility corridors have been obtained. Some types of diagrams have been described for the first time. It has been shown that a variable reactivity of particles is a key factor determining the type of phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bianchi, R. Blaak, and C. N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011).

    Article  Google Scholar 

  2. M. I. Shliomis, Phys. Usp. 17, 153 (1974).

    Article  ADS  Google Scholar 

  3. P. N. Pusey and W. van Megen, Nature (London, U.K.) 320, 340 (1986).

    Article  ADS  Google Scholar 

  4. T. Tlusty and S. A. Safran, Science (Washington, DC, U. S.) 290, 1328 (2000).

    Article  ADS  Google Scholar 

  5. E. Bianchi, J. Largo, P. Tartaglia, E. Zacarellli, and F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006).

    Article  ADS  Google Scholar 

  6. B. Ruzicka, E. Zaccarelli, L. Zulian, R. Angelini, M. Sztucki, A. Moussaid, and F. Sciortino, Nat. Mater. 10, 56 (2011).

    Article  ADS  Google Scholar 

  7. J. Russo, J. M. Tavares, P. I. C. Teixeira, M. M. Telo da Gama, and F. Sciortino, Phys. Rev. Lett. 106, 085703 (2011).

    Article  ADS  Google Scholar 

  8. J. Russo, J. M. Tavares, P. I. C. Teixeira, M. M. Telo da Gama, and F. Sciortino, J. Chem. Phys. 135, 034501 (2011).

    Article  ADS  Google Scholar 

  9. N. G. Almarza, Phys. Rev. E 86, 030101(R) (2012).

    Google Scholar 

  10. I. Erukhimovich and A. V. Ermoshkin, J. Chem. Phys. 116, 368 (2002).

    Article  ADS  Google Scholar 

  11. M. V. Belousov, M. V. Tamm, and I. Y. Erukhimovich, J. Chem. Phys. 128, 114510 (2008).

    Article  ADS  Google Scholar 

  12. R. E. Ryltcev and L. D. Son, Phys. A (Amsterdam, Neth.) 368, 101 (2006).

    Article  ADS  Google Scholar 

  13. R. E. Ryl’tsev and L. D. Son, J. Exp. Theor. Phys. 110, 504 (2010).

    Article  Google Scholar 

  14. R. E. Ryltsev, L. D. Son, and K. Yu. Shunyaev, JETP Lett. 98, 573 (2013).

    Article  ADS  Google Scholar 

  15. L. D. Son, R. E. Ryltcev, V. E. Sidorov, and D. Sordelet, Mater. Sci. Eng. A 449–451, 582 (2007).

  16. L. D. Son, R. E. Ryltsev, and V. E. Sidorov, J. Non-Cryst. Solids 353, 3722 (2007).

    Article  ADS  Google Scholar 

  17. R. E. Ryltsev and L. D. Son, Phys. B (Amsterdam, Neth.) 406, 3625 (2011).

    Article  ADS  Google Scholar 

  18. T. V. Kulikova, A. V. Majorova, K. Yu. Shunyaev, and R. E. Ryltsev, Phys. B (Amsterdam, Neth.) 466, 90 (2015).

    Article  ADS  Google Scholar 

  19. S. I. Kuchanov, S. V. Korolev, and S. V. Panyukov, in Applications of Graph Theory to Chemistry (Nauka, Novosibirsk, 8) [in Russian].

  20. P. J. Flory, J. Phys. Chem. 46, 132 (1942).

    Article  Google Scholar 

  21. W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943).

    Article  ADS  Google Scholar 

  22. F. Tanaka and W. H. Stockmayer, Macromolecules 27, 3943 (1994).

    Article  ADS  Google Scholar 

  23. A. N. Semenov and M. Rubinstein, Macromolecules 31, 1373 (1998).

    Article  ADS  Google Scholar 

  24. A. Coniglio, H. E. Stanley, and W. Klein, Phys. Rev. Lett. 42, 518 (1979).

    Article  ADS  Google Scholar 

  25. A. Coniglio, H. E. Stanley, and W. Klein, Phys. Rev. B 25, 6805 (1982).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Ryltsev.

Additional information

Original Russian Text © R.E. Ryltsev, L.D. Son, K.Yu. Shunyaev, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 9, pp. 659–665.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryltsev, R.E., Son, L.D. & Shunyaev, K.Y. Liquid–Gas Equilibrium in Nanoparticle Network-Forming Systems. Jetp Lett. 108, 627–632 (2018). https://doi.org/10.1134/S0021364018210129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018210129

Navigation