Skip to main content
Log in

Kinetic changes of ethanolamine base exchange activity and increase of viscosity in sarcolemmal membranes of hamster heart during development of cardiomyopathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The activity of the phospholipid base exchange enzyme specific for ethanolamine has been measured in cardiac sarcolemmal membrane preparations from Syrian golden and UM-X7.1 cardiomyopathic hamsters. In Syrian golden hamsters, the Km of the enzyme for ethanolamine does not change with age, whereas it almost doubles in membranes from cardiomyopathic animals, from the 30th to the 150th day of age. During the same period, the membrane cholesterol content increases by 68% in cardiomyopathic hamsters, whereas it does not change significantly in the Syrian golden hamster strain. As a consequence, in the adult animal, the cholesterol to phospholipid ratio and the viscosity of sarcolemmal membranes are higher in UM-X7.1 strain than in Syrian golden hamsters. A cause consequence relationship between the enzymatic changes and the compositional modifications in the sarcolemma occurring in UM-X7.1 hamsters during the development of cardiomyopahhy is proposed. (Mol Cell Biochem 116: 89–93,1992)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Homburger F, Baker JR, Nixon CW, Whitney R: Primary, generalized polymyopathy and cardiac necrosis in an inbred line of Syrian hamsters. Med Exp (Basel) 6: 339–345, 1962

    Google Scholar 

  2. Homburger F, Baker JR, Nixon CW, Welgram G: A new hereditary disease of Syrian hamsters: primary generalized polymyopathy and cardiac necrosis. Arch Intern Med 110: 660–662, 1962

    Google Scholar 

  3. asmin G, Proschek L: Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. I. Progression of heart and skeletal muscle lesions. Muscle Nerve 5: 20–25, 1982

    Google Scholar 

  4. Proschek L, Jasmin G: Hereditary polymyopathy and cardiomyopathy in the Syrian hamster. II. Development of heart necrotic changes in relation to defective mitochondrial function. Muscle Nerve 5: 26–32, 1982

    Google Scholar 

  5. Paterson RA, Layberry RA, Nadkarni BB: Cardiac failure in the hamster. A biochemical and electron microscopic study. Lab Invest 26: 755–766, 1972

    Google Scholar 

  6. Whitmer JT: Energy metabolism and mechanical function in perfused hearts of Syrian hamsters with dilated or hypertrophic cardiomyopathy. J Mol Cell Cardiol 18:307–317, 1986

    Google Scholar 

  7. Okumura K, Panagia V, Jasmin G, Dhalla NS: Sarcolemmal phospholipid N-methylation in genetically determined hamster cardiomyopathy. Biochem Biophys Res Commun 143: 31–37, 1987

    Google Scholar 

  8. Panagia V, Singh JN, Anand-Srivastava MB, Pierce GN, Jasmin G, Dhalla NS: Sarcolemmal alterations during the development of genetically determined cardiomyopathy. Cardiovasc Res 18: 567–572, 1984

    Google Scholar 

  9. Hano O, Mitsuoka T, Matsumoto Y, Ahmed R, Hirata M, Hirata T, Mori M, Yano K, Hashiba K: Arrhythmogenic properties of the ventricular myocardium in cardiomyopathic Syrian hamster, BIO 14.6 strain. Cardiovasc Res 25: 49–57, 1991

    Google Scholar 

  10. Factor SM, Sonnenblick EH: Microvascular spasm in the cardiomyopathic Syrian hamster as a cause of focal necrosis and myocardial failure. In: C Kawai and WH Abelmann (eds) Pathogenesis of myocarditis and cardiomyopathy. Recent experimental and clinical studies. University of Tokyo Press, 1987, pp 63–78

  11. Berry B, Poulsen R, Yunge L, Bruneval P, Fitchett D, de Chastonay C, Gabibani G, Huttner I: Numerical densities of intramembrane particles in the cardiac sarcolemma of normal and myopathic Syrian hamsters. J Mol Cell Cardiol 15: 503–513, 1983

    Google Scholar 

  12. Singh JN, Dhalla NS, McNamara DB, Bajusz E, Jasmin G: Membrane alteration in failing hearts of cardiomyopathic hamsters. In: A Fleckenstein and G Rona (eds) Recent advances in studies on cardiac structure and metabolism. University Park Press, Baltimore, 1975, pp 259–268

    Google Scholar 

  13. Slack BE, Boegman RJ, Downie JW, Jasmin G: Cardiac membrane cholesterol in distrophic and verapamil-treated hamsters. J Mol Cell Cardiol 12: 179–185, 1980

    Google Scholar 

  14. Arienti G, Pirotta M, Giorgini D, Porcellati G: Base-exchange reactions of phospholipid metabolism in chick brain microsomal membranes. Biochem J 118: 3–4, 1970

    Google Scholar 

  15. Vecchini A, Binaglia L, Di Nardo P, Minieri M, Tallarida G: Phospholipid base exchange enzyme activity in sarcolemmal membranes from the heart of cardiomyopathic hamsters. Mol Cell Biochem (submitted)

  16. Binaglia L, Roberti R, Vecchini A, Alunni-Bistocchi G, Porcellati G: Influence of fatty acid composition of membrane phospholipids on membrane-bound enzymic activities. Prog Fd Nutr Sci 4: 65–70, 1980

    Google Scholar 

  17. Binaglia L, Roberti R, Vecchini A, Porcellati G: The chemical composition of the lipid phase in biological membranes and their enzyme kinetics. Gazz Chim It 109: 437–440, 1979

    Google Scholar 

  18. Bajusz E, Jasmin G: Hereditary disease model of congestive cardiomyopathy: Studies on a new line of Syrian Hamsters. Fed Proc 31: 621–628,1972

    Google Scholar 

  19. Pitts BJR: Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 254: 6232–6235, 1979

    Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    Google Scholar 

  21. Folch J, Lees M, Sloane-Stanley GM: A simplified method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509, 1957

    Google Scholar 

  22. Mascini M, Moscone D, Palleschi G: Determination of free and total cholesterol in human bile samples using enzyme electrodes. Clin Chim Acta 132: 7–15, 1983

    Google Scholar 

  23. Baykov AA, Evtushenko OA, Avaeva SM: A malachite green procedure for ortophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171: 266–270, 1988

    Google Scholar 

  24. Shinitzky M, Barenholz Y: Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515: 367–394,1978

    Google Scholar 

  25. Antunes-Madeira MC, Madeira VMC: Membrane fluidity as affected by the organochlorine insecticide DDT. Biochim Biophys Acta 1023: 469–474, 1990

    Google Scholar 

  26. Vecchini A, Roberti R, Freysz L, Binaglia L: Partial purification of ethanolaminephosphotransferase from rat brain microsomes. Biochim Biophys Acta 918: 40–47, 1987

    Google Scholar 

  27. Horrocks LA: The alk-l-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin layer chromatography. J Lipid Res 9: 469–472, 1968

    Google Scholar 

  28. Panagia V, Singh JN, Anand-Srivastava MB, Pierce GN, Jasmin G, Dhalla NS: Sarcolemmal alterations during the development of genetically determined cardiomyopathy. Cardiovasc Res 18: 567–572,1984

    Google Scholar 

  29. Weglicki WB, Owens K, Kennet FF, Kessner A, Harris L, Wise RM: Preparation and properties of highly enriched cardiac sarcolemma from isolated adult myocytes. J Biol Chem 255: 3605–3609,1980

    Google Scholar 

  30. Tibbits GF, Sasaki M, Ikeda M, Shimada K, Tsuruhara T, Nagatomo T: Characterization of rat myocardial sarcolemma. J Mol Cell Cardiol 13: 1051–1061, 1981

    Google Scholar 

  31. Panagia V, Lamers JMJ, Singal PK, Dhalla NS: Ca2+ -and Mg2+ -dependent ATPase activities in the deoxycholatetreated rat heart sarcolemma. Int J Biochem 14: 387–397, 1982

    Google Scholar 

  32. Post JA, Langer GA, Op den Kamp JAF, Verkleij AJ: Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and ‘gas-dissected’ membranes. Biochim Biophys Acta 943: 256–266, 1988

    Google Scholar 

  33. Dhalla NS, Pierce GN: Isolation and characterization of the sarcolemmal membrane from the heart. In: NS Dhalla (ed) Methods for Studying Cardiac Membranes, vol 1. CRC Press, Boca Raton, Florida, 1984, pp 3–18

    Google Scholar 

  34. Sanderman H: Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515: 209–237, 1978

    Google Scholar 

  35. Bouchard A, Watters TA, Wu S, Parmley WW, Stone RD, Botvinick E, Sievers R, Jasmin G, Wikman-Coffelt J: Effect of altered coronary perfusion pressure on function and metabolism of normal and cardiomyopathic hamster hearts. J Mol Cell Cardiol 19: 1011–1023, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecchini, A., Binaglia, L., Di Nardo, P. et al. Kinetic changes of ethanolamine base exchange activity and increase of viscosity in sarcolemmal membranes of hamster heart during development of cardiomyopathy. Mol Cell Biochem 116, 89–93 (1992). https://doi.org/10.1007/BF01270574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01270574

Key words

Navigation