Skip to main content
Log in

Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This contribution is one in a series of two papers. In the current paper a constitutive law is developed that includes the micro-structural effects by particle displacement as well as particle rotation. Both degrees of freedom can be related to corresponding macroscopic kinematic continuum variables, where the resulting gradients of displacement are selected up to the fourth-order and the gradients of rotation up to the third order. The elastic micro-structural properties for an individual particle are used to derive the macro-level behavior for a fabric of equal-sized spherical particles, leading to a second-gradient micro-polar formulation. In this model, all coefficients are expressed in terms of particle stiffness and particle structure. It is shown that the second-gradient micro-polar model can be reduced to simpler forms, such as the classic linear elastic model, the second-gradient model and the Cosserat model. In the accompanying paper these reduced forms are treated in more detail by analyzing the corresponding dispersion relations for plane body wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Triantafyllidis, N., Aifantis, E. C.: A gradient approach to localization of deformation I-Hyperelastic materials. J. Elasticity16, 225–237 (1986).

    Google Scholar 

  2. De Borst, R., Mühlhaus, H.-B.: Gradient-dependent plasticity: Formulation and algorithmic aspects. Int. J. Num. Meth. Eng.35, 521–539 (1992).

    Google Scholar 

  3. Sluys, L. J.: Wave propagation, localisation and dispersion in softening solids. PhD thesis, Delft University of Technology, The Netherlands, 1992.

    Google Scholar 

  4. Pamin, J.: Gradient-dependent plasticity in numerical simulation of localization phenomena. PhD thesis, Delft University of Technology, The Netherlands, 1994.

    Google Scholar 

  5. Peerlings, R. H. J., De Borst, R., Brekelmans, W. A. M., De Vree, J. H. P.: Gradient-enhanced damage for quasi-brittle materials. Int. J. Num. Meth. Eng.39, 3391–3403 (1996).

    Google Scholar 

  6. Geers, M. G. D.: Experimental analysis and computational modelling of damage and fracture. PhD thesis, Eindhoven University of Technology, The Netherlands, 1997.

    Google Scholar 

  7. Chang, C. S., Gao, J.: Wave propagation in granular rod using high-gradient theory. ASCE J. Eng. Mech.123, 52–59 (1997).

    Google Scholar 

  8. Chang, C. S., Gao, J., Zhong, X.: High-gradient modelling for Love wave propagation in geological materials. ASCE J. Eng. Mech.124, 1354–1359 (1998).

    Google Scholar 

  9. Cosserat, E., Cosserat, F.: Théorie des corps deformables. Paris: Herman et fils 1909.

    Google Scholar 

  10. Mindlin, R. D.: Micro-structure in linear elasticity.Arch. Rat. Mech. Anal.16, 51–78 (1964).

    Google Scholar 

  11. Toupin, R. A.: Theory of elasticity with couple-stress. Arch. Rat. Mech. Anal.17, 85–112 (1964).

    Google Scholar 

  12. Eringen, A. C.: Theory of micro-polar elasticity. In: Fracture—an advanced treatise, vol. II (Liebowitz, H., ed.), pp. 621–693. New York: Academic Press 1968.

    Google Scholar 

  13. Mühlhaus, H.-B., Vardoulakis, I.: The thickness of shear bands in granular materials. Géotechnique37, 271–283 (1987).

    Google Scholar 

  14. Mühlhaus, H.-B.: Application of Cosserat theory in numerical solutions of limit load problems. Ing.-Arch59, 124–137 (1989).

    Google Scholar 

  15. De Borst, R.: Simulation of strain localisation: A reappraisal of the Cosserat continuum. Eng. Comp.8, 317–332 (1991).

    Google Scholar 

  16. De Borst, R., Sluys, L. J.: Localisation in a Cosserat continuum under static and dynamic loading conditions. Comp. Meth. Appl. Mech. Eng90, 805–827 (1992).

    Google Scholar 

  17. Chang, C. S., Ma L.: Elastic material constants for isotropic granular solids with particle rotation. Int. J. Solids Structures29, 1001–1018 (1992).

    Google Scholar 

  18. Groen, A. E.: Three-dimensional elasto-plastic analysis of soils. PhD thesis, Delft University of Technology, The Netherlands, 1997.

    Google Scholar 

  19. Walton, K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids35, 213–226 (1987).

    Google Scholar 

  20. Jenkins, J. T.: Volume change in small strain axisymmetric deformations of granular material. In: Micromechanics of granular materials (Satake, M., Jenkins, J. T., eds.), pp. 143–152. Amsterdam: Elsevier 1988.

    Google Scholar 

  21. Bathurst, R. J., Rothenburg, L.: Micromechanical aspects of isotropic granular assemblies with linear contact interactions. ASME J. Appl. Mech.55, 17–23 (1988).

    Google Scholar 

  22. Chang, C. S.: Micromechanical modelling of constitutive relations for granular material. In: Micromechanics of granular materials (Satake, M., Jenkins, J. T., eds.), pp. 271–279. Amsterdam: Elsevier 1988.

    Google Scholar 

  23. Chang, C. S., Gao, J.: Second-gradient constitutive theory for granular material with random packing structure. Int. J. Solids Structures16, 2279–2293 (1995).

    Google Scholar 

  24. Mühlhaus, H.-B., Oka, F.: Dispersion and wave propagation in discrete and continuous models for granular materials. Int. J. Solids Structures33, 2841–2858 (1996).

    Google Scholar 

  25. Chang, C. S., Liao, C. L.: Constitutive relation for a particulate medium with the effect of particle rotation. Int. J. Solids Structures26, 437–453 (1990).

    Google Scholar 

  26. Hill, R.: The esential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids15, 79–95 (1967).

    Google Scholar 

  27. Christofferson, J., Mehrabadi, M. M., Nemat-Nasser, S.: A micromechanical description on granular material behavior. ASME J. Appl. Mech.48, 339–344 (1981).

    Google Scholar 

  28. Rothenberg, L., Selvadurai, A. P. S.: Micromechanical definition of the Cauchy stress tensor for particulate media. In: Mechanics of structured media (Selvadurai, A. P. S., ed.), pp. 469–486.Amsterdam: Elsevier 1981.

    Google Scholar 

  29. Eringen, A. C., Edelen, D. G. B.: On nonlocal elasticity. Int. J. Engng Sci.10, 233–248 (1972).

    Google Scholar 

  30. Bažant, Z. P., Pijaudier-Cabot, G.: Nonlocal continuum damage localization, instability and convergence. ASME J. Appl. Mech.55, 287–293 (1988).

    Google Scholar 

  31. Digby, P. J.: The effective elastic moduli of porous granular rock. ASME J. Appl. Mech.48, 803–808 (1981).

    Google Scholar 

  32. Weyl, H.: Classical groups. New York: Princeton University Press 1946.

    Google Scholar 

  33. Suiker, A. S. J., Chang, C. S.: Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech.42, 223–234 (2000).

    Google Scholar 

  34. Eringen, A. C.: Nonlocal nature of yield plasticity and fracture. In: Modern approaches to plasticity (Kolymbas, D., ed.), pp. 125–145. Amsterdam: Elsevier 1993.

    Google Scholar 

  35. Suiker, A. S. J., De Borst, R., Chang, C. S.: Micro-mechanically based higher-order continuum models for granular materials. In: Constitutive modelling of granular materials (Kolymbas, D., ed.), pp. 249–274. Heidelberg: Springer 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suiker, A.S.J., de Borst, R. & Chang, C.S. Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory. Acta Mechanica 149, 161–180 (2001). https://doi.org/10.1007/BF01261670

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01261670

Keywords

Navigation