Skip to main content
Log in

Studies on rat brain catecholamine synthesis and Β-adrenoceptor number following administration of electroconvulsive shock, desipramine and clenbuterol

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The effects of administration to rats of repeated electroconvulsive shock (ECS), clenbuterol and desipramine (DMI) onΒ-adrenoceptor number in cortex, and noradrenaline (NA) and dopamine (DA) turnover in whole brain has been investigated by examining the rate of decline of NA concentration (kNA) following injection ofα-methyl-p-tyrosine. A single injection of clenbuterol (5 mg/kg) raised brain NA content and decreased the rate constant (kNA), leaving the turnover rate unaltered. Acute DMI injection decreased kNA and turnover rate, while a single ECS did not change NA metabolic rate. Repeated treatment with either ECS (5 seizures over 10 days), clenbuterol (5 mg/kg for 14 days) or DMI (5 mg/kg twice daily for 14 days) decreasedΒ-adrenoceptor density in cortex. No change in NA content, rate constant or turnover rate was observed after repeated ECS or clenbuterol administration. Ninety min after the last dose of DMI brain NA content was significantly decreased but kNA was unchanged compared with control animals, possibly because of the presence of subsensitive presynapticα 2-adrenoceptors. At 18 hours after the last dose brain NA content was still lower than control animals but kNA was enhanced. This is presumably a “withdrawal” effect, the uptake inhibitory effect of the drug now being decreased. The treatments had little effect on DA turnover apart from DMI decreasing synthesis rate. Clearly there is no obvious relationship between the ability of antidepressant treatments to alter NA turnover and decreaseΒ-adrenoceptor number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergstrom, D. A., Kellar, K. J.: Effects of electroconvulsive shock on monoaminergic binding sites in rat brain. Nature278, 464–466 (1979).

    Google Scholar 

  • Brodie, B. B., Costa, E., Dlabac, A., Neff, N. H., Smookler, H. H.: Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J. Pharmac. exp. Ther.154, 494–498 (1966).

    Google Scholar 

  • Brunello, N., Barbaccia, M. L., Chuang, D. M., Costa, E.: Down-regulation ofΒ-adrenergic receptors following repeated injections of desmethylimipramine: premissive role of serotonergic axons. Neuropharmacology21, 1145–1149 (1982).

    Google Scholar 

  • Carlsson, A., Lindqvist, M.: Effects of antidepressant agents on the synthesis of brain monoamines. J. Neural Transm.43, 73–91 (1978).

    Google Scholar 

  • Costa, E.: Simple neuronal models to estimate turnover rate of noradrenergic transmitterin vivo. Biochem. Psychopharmac.2, 169–204 (1970).

    Google Scholar 

  • Crews, F. T., Steven, M. P., Goodwin, F. K.: Acceleration ofΒ-receptor desensitization by combined administration of antidepressants and phenoxybenzamine. Nature290, 787–789 (1981).

    Google Scholar 

  • Davies, C. L., Molyneux, S. G.: Routine determination of plasma catecholamines using reversed-phase, ion-pair high performance liquid chromatography with electrochemical detection. J. Chromatogr.231, 41–51 (1982).

    Google Scholar 

  • Ebert, M. H., Baldessarini, R. J., Lipinski, J. F., Berv, K.: Effects of electroconvulsive seizures on amine metabolism in the rat brain. Arch. Gen. Psychiatry29, 397–401 (1973).

    Google Scholar 

  • Graham-Jones, S., Fillenz, M., Gray, J. A.: The effects of footshock and handling on tyrosine hydroxylase activity in synaptosomes and solubilized preparations from rat brain. Neuroscience9, 679–686 (1983).

    Google Scholar 

  • Hall, H., SÄllemark, M., Ross, S. B.: Clenbuterol, a centralΒ-adrenoceptor agonist. Acta Pharmac. Toxic.47, 159–160 (1980).

    Google Scholar 

  • Hallberg, H., Almgren, O., Svensson, T. H.: Increased brain serotonergic and noradrenergic activity after repeated systemic administration of the beta-2 adrenoceptor agonist salbutamol, a putative antidepressant drug. Psychopharmacology73, 201–204 (1981).

    Google Scholar 

  • Heal, D. J., Lister, S., Smith, S. L., Davies, C. L., Molyneux, S. G., Green, A. R.: The effects of acute and repeated administration of various antidepressants on clonidine-induced hypoactivity in mice and rats. Neuropharmacology22, 983–992 (1983).

    Google Scholar 

  • Hendley, E. D.: Electroconvulsive shock and norepinephrine uptake kinetics in rat brain. Psychopharmac. Commun.2, 17–25 (1976).

    Google Scholar 

  • Janowsky, A., Steranka, L. R., Gillespie, D. D., Sulser, F.: Role of neuronal signal input in the down-regulation of central noradrenergic receptor functional by antidepressant drugs. J. Neurochem.39, 290–292 (1982 a).

    Google Scholar 

  • Janowsky, A., Okada, F., Manier, D. H., Applegate, C.D., Sulser, F., Steranka, L. R.: Role of serotonergic input in the regulation of theΒ-adrenergic receptor-coupled adenylate cyclase system. Science (Washington)218, 900–901 (1982 b).

    Google Scholar 

  • Kety, S. S., Javoy, F., Thierry, A. M., Julou, Z., Glowinski, J.: A sustained effect of electroconvulsive shock on the turnover of norepinephrine in the central nervous system of the rat. Proc. Natl. Acad. Sci. U.S.A.58, 1249–1254 (1967).

    Google Scholar 

  • MacMillen, B. A., Warnock, W., German, D. C., Shore, P. A.: Effects of chronic desipramine treatment on rat brain noradrenergic responses toα 2-adrenergic drags. Eur. J. Pharmac.61, 239–246 (1980).

    Google Scholar 

  • Minchin, M. C. W., Williams, J., Bowdler, J. M., Green, A. R.: The effect of electroconvulsive shock on the uptake and release or noradrenaline and 5-hydroxytryptamine in rat brain slices. J. Neurochem.40, 765–768 (1983).

    Google Scholar 

  • Modigh, K.: Long-term effects of electroconvulsive shock therapy on synthesis turnover and uptake of brain monoamines. Psychopharmacology49, 179–185 (1976).

    Google Scholar 

  • Musacchio, J. M., Julou, I., Kety, S. S., Glowinski, J.: Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock. Proc. Natl. Acad. Sci. U.S.A.63, 1117–1119 (1969).

    Google Scholar 

  • Neff, N. H., Costa, E.: Effect of tricyclic antidepressants and chlorpromazine on brain catecholamine synthesis. In: Antidepressant Drugs (Garattini, S., Dukes, M. N. G., eds.), pp. 28–34. (Int. Congr. Series 122). Amsterdam: Excerpta Medica. 1967.

    Google Scholar 

  • Nielsen, M., Braestrup, C.: Chronic treatment with desipramine caused a sustained decrease of 3, 4-dihydroxyphenylglycol sulphate and total 3-methoxy-4-hydroxyphenylglycol in the rat brain. Naunyn-Schmiedeberg's, Arch. Pharmac.300, 87–92 (1977).

    Google Scholar 

  • Nimgaonkar, V. L., Goodwin, G. M., Davies, C. L., Green, A. R.: Down-regulation ofΒ-adrenoceptors in rat cortex by repeated administration of desipramine, electroconvulsive shock and clenbuterol requires 5-HT neurones but not 5-HT. Neuropharmacology24, 279–283 (1985).

    Google Scholar 

  • Schildkraut, J.J., Winokur, A., Draskoczy, P. L., Hensle, J. H.: Changes in norepinephrine turnover in rat brain during chronic administration of imipramine and protriptyline: a possible explanation of the delay in onset of clinical antidepressant effects. Am. J. Psychiat.127, 1032–1039 (1971).

    Google Scholar 

  • Schweitzer, S. J., Schwartz, R., Friedhoff, A. J.: Intact presynaptic terminals required for beta-adrenergic receptor regulation by desipramine. J. Neurochem.33, 377–379 (1979).

    Google Scholar 

  • Stanford, S. C., Fillenz, M., Ryan, E.: The effect of repeated mild stress on cerebral cortical andrenoceptors and noradrenaline synthesis in the rat. Neurosci. Lett.45, 163–167 (1984).

    Google Scholar 

  • Sugrue, M. F.: Effects of acutely and chronically administered antidepressants on the clonidine-induced decrease in rat brain 3-methoxy-4-hydroxyphenylethylene-glycol sulphate content. Life Sci.28, 377–384 (1981).

    Google Scholar 

  • Sugrue, M. F.: A study of the effects of chronic salbutamol on rat brain monoaminergic systems. J. Pharm. Pharmac.34, 446–449 (1982).

    Google Scholar 

  • Sulser, F., Mobley, P. L.: Regulation of central noradrenergic receptor functions: new vistas on the mode of action of antidepressant treatments. In: Neuroregulators: Basic and Clinical Aspects (Usdin, E., Davis, J. M., Bunney, W.E., eds.), pp. 55–83. Chichester: J. Wiley. 1981.

    Google Scholar 

  • Svensson, T. H., Usdin, T.: Feedback inhibition of brain noradrenaline neurones by tricyclic antidepressants: α-receptor mediation. Science202, 1089–1091 (1978).

    Google Scholar 

  • Wiech, N. W., Ursillo, R. C.: Acceleration of desipramine-induced decrease of rat corticocerebralΒ-adrenergic receptors by yohimbine. Commun. Psychopharmac.4, 95–100 (1980).

    Google Scholar 

  • Wolfe, B. B., Harden, T. K., Sporn, J. R., Molinoff, P. B.: Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J. Pharmac. exp. Ther.207, 446–457 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimgaonkar, V.L., Heal, D.J., Davies, C.L. et al. Studies on rat brain catecholamine synthesis and Β-adrenoceptor number following administration of electroconvulsive shock, desipramine and clenbuterol. J. Neural Transmission 65, 245–259 (1986). https://doi.org/10.1007/BF01249086

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249086

Key words

Navigation