Skip to main content
Log in

Alkyl and cyclic substituted thiuram disulphides as ligands. titanium(iv), vanadium(iv), and oxovanadium(iv) complexes

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Titanium(IV) hexacoordinate thiuram disulphide complexes of the type [TiX4R2NC(S)SSC(S)NR2}] (X=Cl or Br; R=Me, Et, piperidinyl or morpholinyl) have been prepared by reaction between TiX4 (X=Cl or Br) and the thiuram disulphide. Similar reactions with VOCl3 lead to reduction of vanadium(V) and give rise to the oxovanadium(IV) pentacoordinate complexes [VOCl2{R2NC(S)SSC(S)NR2}]. However, the reactions of these same thiuram disulphide ligands with [VCl2(THF)2] (THF=tetrahydrofuran) cause oxidation of vanadium and to the reduction of the disulphide to the corresponding dithiocarbamate [R2NCS2], resulting in new dichlorobis (dithiocarbamate)vanadium(IV) complexes [VCl2-(R2NCS2)2]. All the compounds have been characterized by elemental analyses, i.r., visible and e.p.r. spectra. Both thiuram disulphides and dithiocarbamate ligands exhibit bidentate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Thorn and R. A. Ludwig,The Dithiocarbamate and Related Compounds, Elsevier, Amsterdam (1962).

    Google Scholar 

  2. D. Coucouvanis,Prog. Inorg. Chem., 11, 234 (1970); D. Coucouvanis,Prog. Inorg. Chem., 26, 302 (1979); R. P. Burns, F. P. McCullough and C. A. McAuliffe,Adv. Inorg. Chem. Radiochem., 23, 211 (1980).

    Google Scholar 

  3. E. W. Ainscough and A. M. Brodie,Coord. Chem. Rev., 27, 59 (1978).

    Google Scholar 

  4. E. W. Ainscough and A. M. Brodie,J. Chem. Soc., Dalton Trans., 565 (1977).

  5. G. Contreras and H. Cortés,J. Inorg. Nucl. Chem., 33, 1337 (1971).

    Google Scholar 

  6. B. W. Sketon and A. H. White,Aust. J. Chem., 30, 1693 (1977); P. T. Beurkens, J. A. Cras, J. M. Noordik and A. M. Spruift,J. Cryst. Mol. Struct., 1, 93 (1971).

    Google Scholar 

  7. I. Cuadrado and M. Morán,Transition Met. Chem., 6, 329 (1981).

    Google Scholar 

  8. I. Cuadrado and M. Morán,Transition Met. Chem., 9, 96 (1984).

    Google Scholar 

  9. A. Jezierki and J. B. Raynor,J. Chem. Soc., Dalton Trans., 1 (1981).

  10. R. B. von Dreele and R. C. Fay,J. Am. Chem. Soc., 94, 7395 (1972).

    Google Scholar 

  11. R. C. Fay, A. N. Bhat, D. F. Lewis, R. F. Lindmark and S. H. Strauss,Inorg. Chem., 13, 886 (1974).

    Google Scholar 

  12. D. Nicholls and K. R. Seddon,J. Chem. Soc., Dalton Trans., 2751 (1973); K. L. Baker and G. W. A. Fowles,J. Inorg. Nucl Chem., 29, 1881 (1967).

  13. C. Preti, G. Tosi and P. Zannini,J. Inorg. Nucl. Chem., 41, 485 (1979); C. Preti, F. Ferghleri and G. Tosi,Transition Met. Chem., 8, 372 (1983).

    Google Scholar 

  14. J. Chatt and L. A. Duncanson,Nature, 177, 1042 (1956); J. Chatt and L. A. Duncanson,Acta Chem. Fenn., 29B, 75 (1956).

    Google Scholar 

  15. D. Coucouvanis and J. P. Fackler,Inorg. Chem., 6, 2047 (1967).

    Google Scholar 

  16. F. Bonati and R. Ugo,J. Organometal. Chem., 10, 257 (1967).

    Google Scholar 

  17. C. O'Connor, J. D. Gilbert and G. Wilkinson,J. Chem. Soc., A, 84 (1959).

    Google Scholar 

  18. K. Nakamoto, J. Fujita, R. A. Condrate and Y. Morimoto,J. Chem. Phys., 39, 423 (1963).

    Google Scholar 

  19. K. Jain,J. Inorg. Nucl. Chem., 43, 1155 (1981).

    Google Scholar 

  20. R. P. Conney and D. B. Fraser,Austral. J. Chem., 27, 1855 (1974).

    Google Scholar 

  21. J. A. Douek and J. T. Spickett,J. Inorg. Nucl. Chem., 35, 511 (1973).

    Google Scholar 

  22. C. J. Balhausen and H. B. Gray,Inorg. Chem., 1, 111 (1962).

    Google Scholar 

  23. L. G. Vanquickenborne and S. P. McGlynn,Theor. Chim. Acta, 9, 390 (1968).

    Google Scholar 

  24. M. H. Valek, W. A. Yeranos and R. L. Belford,J. Mol. Spectrosc., 37, 228 (1971).

    Google Scholar 

  25. H. A. Kuska and P. Yang,Inorg. Chem., 16, 1938 (1977).

    Google Scholar 

  26. H. J. Stoklossa, J. R. Wasson and B. J. McCormick,Inorg. Chem., 13, 592 (1974).

    Google Scholar 

  27. P. F. Bramman, T. Lund and J. B. Raynor,J. Chem. Soc., Dalton Trans., 45 (1975).

  28. M. M. Iannuzi and P. H. Rieger,Inorg. Chem., 14, 2895 (1975).

    Google Scholar 

  29. R. G. Cavell,Inorg. Chem., 11, 1591 (1972).

    Google Scholar 

  30. A. B. P. Lever,Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968.

    Google Scholar 

  31. J. E. Wertz and J. R. Bolton,Electronic Spin Resonance, McGraw-Hill, New York, 1972.

    Google Scholar 

  32. F. E. Dikson and C. J. Kunesh,Anal. Chem., 44, 978 (1972).

    Google Scholar 

  33. H. J. Stoklossa and J. R. Wasson,J. Inorg. Nucl Chem., 38, 677 (1976).

    Google Scholar 

  34. B. R. McGarvey inElectron Spin Resonance of Metal Complexes, Plenum Press, New York, 1969.

    Google Scholar 

  35. B. R. McGarvey,J. Phys. Chem., 71, 51 (1967).

    Google Scholar 

  36. C. P. Stewart and L. Porte,J. Chem. Soc., Dalton Trans., 1661 (1972).

  37. K. H. Gayer,Can. J. Chem., 37, 1373 (1959).

    Google Scholar 

  38. R. J. Kern,J. Inorg. Nucl. Chem., 24, 1105 (1962).

    Google Scholar 

  39. F. H. Köhler and W. Prosselorf,Z. Naturforsch., 32b, 1026 (1977).

    Google Scholar 

  40. H. L. Klöpping and G. J. M. van der Kerk,Rec. Trav. Chim., 70, 917 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuadrado, I., Morán, M. Alkyl and cyclic substituted thiuram disulphides as ligands. titanium(iv), vanadium(iv), and oxovanadium(iv) complexes. Transition Met Chem 11, 375–381 (1986). https://doi.org/10.1007/BF01225987

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225987

Keywords

Navigation