Skip to main content
Log in

Positron dynamics in solids

  • Invited Paper
  • Published:
Applied Physics Aims and scope Submit manuscript

Marius: Dans un verre, il n'y a que trois tiers. César: Dlors, explique-moi comment j'en ai mis quatre dans ce verre. Marius: Ç, c'est de l'Arithmétique. César: Oui, quand on ne sait plus quoi dire, on cherche à détourner la conversation... Et la dernière goutte, c'est de l'arithmétique aussi? Marcel Pagnol in Marius

Abstract

The implantation and propagation of positrons in solids are discussed. Several examples for the application of the positron method in the study of solid state properties are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.I.Gleason, I.D.Taylor, D.L.Tabern: Nucleonics8, 12 (1951)

    Google Scholar 

  2. W.Brandt: In:Positron Annihilation, Proceedings of the International Conference, 1965,, Ed. by A.T.Stewart and L.O.Roellig (Academic Press, New York 1967), p. 178

    Google Scholar 

  3. W.Brandt, R.Paulin: Phys. Rev. B5, 2430 (1972)

    Article  ADS  Google Scholar 

  4. W.Brandt, H.F.Waung, P.W.Levy: Phys. Rev. Letters26, 496 (1971)

    Article  ADS  Google Scholar 

  5. W.Brandt, L.-J.Cheng: (to be published)

  6. R.Orth: International Positron Conference, 1973, Ontaniemi, Finland (unpublished)

  7. Cf. the review by A.Seeger: J. Phys. F3, 248 (1973)

    Article  ADS  Google Scholar 

  8. P.Hautojärvi, A.Tamminen, P.Jauho: Phys. Rev. Letters24, 459 (1970)

    Article  ADS  Google Scholar 

  9. P.Hautojärvi: Solid State Comm.11, 1049 (1972)

    Article  ADS  Google Scholar 

  10. J.Baram, M.Rosen: Phys. stat. sol. (a)16, 263 (1973)

    Article  ADS  Google Scholar 

  11. Ch.Dauwe, D.Segers, L.Dorikens-Vanpraet, M.Dorikens: Phys. stat. sol. (a)17, 443 (1973)

    Article  ADS  Google Scholar 

  12. W.Brandt, J.H.Fahs: (to be published)

  13. N.F.Mott: Proc. Cambridge Phil. Soc.32, 281 (1936)

    Article  ADS  MATH  Google Scholar 

  14. J.Arponen, P.Hautojärvi, R.Nieminen, E.Pajanne: Solid State Comm.12, 143 (1973). They treated similarly constructed vacancies but do not consider selfconsistent solutions for the vacancy A center

    Article  ADS  Google Scholar 

  15. W.Brandt, J.Reinheimer: Phys. Letter35A, 109 (1971). Equation (29) gives the proper limit in (30) forr s ≫1, viz., the spin-averaged Ps annihilation rate 2 nsec−1. The approximationh(r s )=1+0.7r 2 s is equally applicable in the metallic ranger s ≲4, but is preferable in applications of (28) and (31) to atoms because it approaches the proper limith=1 whenr s ≪1

    ADS  Google Scholar 

  16. For a solid of densityd[g/cm3], atomic weightA[g] and valencyN val, the constantr s (in units ofa 02/me2=0.529 Å=1 a.u.) can be calculated from the formular s =1.389 (A/N val d)1/3. The conduction electron density ϱ0 is given by ϱ0a 30 =8.916 x 10−2(N val d/A) a.u. The atomic density appearing in Eq. (7) ff. isna 30 =8.916×10−2(d/A) orn=0.602×1024(d/A) cm−3. The conduction electron gas has, in atomic units m0=e=ħ=1, the Fermi momentumk F =(3π2)1/3=(9π/4)1/3r −1s =1.917r −1s ≃2 −1s ; the Fermi velocityv F =k F =2r −1 s , the Fermi energyE F =v 2 F /2=2r −2 s , and the plasma frequency ωp=(4πϱ0)1/2=31/2 −3/2s

  17. P.Bhattacharyya, K.S.Singwi: Phys. Rev. Letters29, 22 (1972)

    Article  ADS  Google Scholar 

  18. J.H.Kusmiss, A.T.Stewart: Advan. Phys.16, 471 (1971)

    Article  ADS  Google Scholar 

  19. C.H.Hodges: Phys. Rev. Letters25, 284 (1970)

    Article  ADS  Google Scholar 

  20. W.Brandt, H.F.Waung: Phys. Rev. B bd3, 3432 (1971)

    Article  ADS  Google Scholar 

  21. W.Brandt: 2nd Internat. Conf. Positron Annihilation, Kingston, Canada (1971), unpublished

  22. R.H.Ritchie: Phys. Rev.114, 644 (1959) and private communication. We are grateful to Dr. Ritchie for discussions and helpful comments, particularly in relation to [19], which he has applied earlier to the slowing-down problem of electrons in metals

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M.L.Goldberger: Phys. Rev.74, 1269 (1948)

    Article  ADS  Google Scholar 

  24. C.K.Majumdar: Phys. Rev.149, 406 (1966)

    Article  ADS  Google Scholar 

  25. H.-J.Mikeska: Z. Physik232, 159 (1970)

    Article  ADS  Google Scholar 

  26. R.Paulin, R.Ripon, W.Brandt: Phys. Rev. Letters31, 1214 (1973), and Appl. Phys.4, 343 (1974)

    Article  ADS  Google Scholar 

  27. This result is equivalent to that of binary reaction kinetics in the post-transient limit for the “radiation boundary condition” given by T.R.Waite: Phys. Rev.107, 463 (1957)

    Article  ADS  Google Scholar 

  28. D.C.Connors, J.C.Bowler: Phys. Letters43A, 395 (1973)

    Article  ADS  Google Scholar 

  29. B.T.A.McKee, H.C.Jamieson, A.T.Stewart: Phys. Rev. Letters31, 634 (1973)

    Article  ADS  Google Scholar 

  30. T.M.Hall, K.C.Jain, R.W.Siegel, A.N.Goland: Bull. Am. Phys. Soc.18, 54 (1973), and private communication

    Google Scholar 

  31. Cf. e.g., T.Allen:Particle Size Measurement (Chapman and Hall, London 1968)

    Google Scholar 

  32. A.Gainotti, C.Ghezzi: Phys. Rev. Letters24, 349 (1970)

    Article  ADS  Google Scholar 

  33. O.Mogensen, K.Petersen, R.M.J.Cotterill, B.Hudson: Nature239, 98 (1972)

    Article  ADS  Google Scholar 

  34. R.M.J.Cotterill, I.K.MacKenzie, L.Smedskjaer, G.Trumpy, J.H.O.L.Träff: Nature239, 99 (1972)

    Article  ADS  Google Scholar 

  35. S.Y.Chuang, S.J.Tao: Can. J. Phys.51, 820 (1973)

    Article  ADS  Google Scholar 

  36. W.Brandt, A.Dupasquier, G.Dürr: Phys. Rev. B6, 3156 (1972)

    Article  ADS  Google Scholar 

  37. L.-J.Cheng, C.K.Yeh, S.T.Ma, C.S.Su: Phys. Rev. B 8, 2280 (1973)

    Article  ADS  Google Scholar 

  38. A.Gainotti, C.Ghezzi: J. Phys. C.5, 779 (1972)

    Article  ADS  Google Scholar 

  39. R.Paulin, G.Ambrosino: J. Phys. (Paris)29, 263 (1968)

    Article  Google Scholar 

  40. W.Brandt, R.Paulin: Phys. Rev. Letters21, 193 (1968)

    Article  ADS  Google Scholar 

  41. F.R.Steldt, P.G.Varlashkin: Phys. Rev.B5, 4265 (1972)

    Article  ADS  Google Scholar 

  42. D.J.Judd, Y.K.Lee, L.Madansky, E.R.Carlson, V.W.Hughes, B.Zundell. Phys. Rev. Letters30, 202 (1973)

    Article  ADS  Google Scholar 

  43. P.O.Egan, E.R.Carlson, V.W.Hughes, M.Mourino, S.L.Varghese, M.Leventhal, G.zuPutlitz: Bull. Am. Phys. Soc.18, 1503 (1973)

    Google Scholar 

  44. C.H.Hodges, M.J.Stott: Solid State Comm.12, 1153 (1973)

    Article  ADS  Google Scholar 

  45. C.H.Hodges, M.J.Stott: Phys. Rev. B7, 73 (1973)

    Article  ADS  Google Scholar 

  46. J.R.Smith: Phys. Rev. Letters25, 1023 (1970)

    Article  ADS  Google Scholar 

  47. J.Frenkel: Z. Physik51, 232 (1928)

    Article  ADS  MATH  Google Scholar 

  48. J.R.Smith, S.C.Ying, W.Kohn: Phys. Rev. Letters30, 610 (1973)

    Article  ADS  Google Scholar 

  49. B.Y.Tong: Phys. Rev. B5, 1436 (1972). He concluded on the basis of a similar model that positrons are not bound at surfaces of metals withr s <3.5 but emitted from a metal surface with a kinetic energy equal to a negative work function which rises to ≈−5 eV whenr s =2. This differs from some of the results reported in [40]

    Article  ADS  Google Scholar 

  50. S.Pendyala, P.W.Zitzwitz, J.W.McGowan, P.H.R.Orth: Phys. Letters43A, 298 (1973), and references cited therein

    Article  ADS  Google Scholar 

  51. W.Brandt, H.F.Waung, P.W.Levy: In Proceedings of International Symposium on Color Centers, Rome, Italy, 1968

  52. T.L.Williams, H.J.Ache: J. Chem. Phys.51, 3536 (1969)

    Article  ADS  Google Scholar 

  53. M.Bertolaccini, A.Dupasquier: Phys. Rev. B1, 2896 (1970)

    Article  ADS  Google Scholar 

  54. K.P.Singh, R.M.Singru, M.S.Tomar, C.N.R.Rao: Phys. Letters A32, 10 (1970)

    Article  ADS  Google Scholar 

  55. D.Herlach, F.Heinrich: Phys. Letters A31, 47 (1970)

    Article  ADS  Google Scholar 

  56. A.Dupasquier: Nuov. Cim. Letters4, 13 (1970)

    Article  Google Scholar 

  57. V.I.Gol'danskii, E.P.Prokop'ev: Sov. Phys. Solid State13, 2481 (1972)

    Google Scholar 

  58. A.Z.Varisov, E.P.Prokop'ev: Sov. Phys. Solid State14, 493 (1972), and references cited therein

    Google Scholar 

  59. Consistent with the suggestions by B.Henderson and J.E.Wertz: Adv. Phys.17, 749 (1968) for the naming of F-centers (F for the German word Farbe=color) we use the symbol A for the annihilation center where a positive-ion vacancy with a trapped positron is uncharged with respect to the lattice. We modify the labels introduced in [2] and use the symbol A for an A center that has trapped an electron and, hence, is negatively charged with regard to the lattice, and the symbol A+ center for an A center that has trapped a positron and, hence, is positively charged with regard to the lattice. For an A+ adjacent to an alkali impurity of the same valence as the host (additive coloring) we use the symbolA +A , where the subscript A stands for any alkali atom impurity. For example, the A +A center in sodium-doped KCl is written as A +Na . This agrees with the F-center nomenclature proposed by E. Sonder and W. A. Sibley: InPoint Defects in Solids, Vol. 1, ed. by J.H.Crawford,Jr. and L.M.Slifkin (Plenum, New York 1972), p. 210, Table I. If an F center (negative ion vacancy with two electrons) traps a positron, it may be named2A center (neutral A center with two electrons); it amounts to a negative-ion vacancy with a trapped Ps ion

    Article  ADS  Google Scholar 

  60. A.Bisi, A.Dupasquier, L.Zappa: J. Phys. C4, L33 (1971)

    Article  ADS  Google Scholar 

  61. A.Bisi, A.Dupasquier, L.Zappa: J. Phys. C4, L311 (1971)

    Article  ADS  Google Scholar 

  62. A.B.Lidiard: In:Handbuch der Physik, Vol. 20, ed. by S.Flügge (Springer, Berlin, Göttingen, Heidelberg 1957)

    Google Scholar 

  63. Á.Balogh, U.Dézsi, D.Horvath, Zs.Kajcsos: Phys. Letters45A, 299 (1973). They reported data on NaCl crystals doped with Ca2+ at 5 concentrations C up to 4×103 ppm. Analysis of their intermediate lifetime data according to (13) shows (G. Dürr: private communication) thatk rises asC 1 forC≦100 ppm and asC 1/2 if averaged over the rise forC≦400 ppm. The exponent 1 is expected if all Ca2+ induced positive-ion vacancies act as A-center precursors [31], and the exponent 1/2, if only the free vacancies contribute [17]. In KCl: Ca the rise ofk was found to be proportional toC 1 forC≦400 ppm [31]. In NaCl:Ca,k appears to reach saturation atC=4×103 ppm, such that effectively only ≈(0.3−1)×103 ppm Ca2+ ions produce A-center precursors. As a consequence, Baloghet al. find that the intensity of the intermediate lifetime component when averaged over all Ca2+ concentrations ≦4×103 ppm investigated rises as ∼C 0.2

    Article  ADS  Google Scholar 

  64. A.Bisi, A.Dupasquier, L.Zappa: J. Phys. C6, 1125 (1973)

    Article  ADS  Google Scholar 

  65. D.Herlach: Helv. Phys. Acta45, 894 (1972)

    Google Scholar 

  66. P.Hautojärvi, R.Nieminen: Phys. Stat. Sol.56, 421 (1973)

    Article  ADS  Google Scholar 

  67. W.Brandt, R.Paulin: Phys. Rev. B8, 4125 (1973)

    Article  ADS  Google Scholar 

  68. I.K.MacKenzie: Phys. Letters30A, 115 (1969)

    Article  ADS  Google Scholar 

  69. R.W.Christy, W.E.Harte: Phys. Rev.109, 710 (1958)

    Article  ADS  Google Scholar 

  70. H.S.Ingham,Jr., R.Smoluchowski: Phys. Rev.117, 1207 (1960)

    Article  ADS  Google Scholar 

  71. S.Marder, V.W.Hughes, C.S.Wu, W.Bennett: Phys. Rev.103, 1258 (1956)

    Article  ADS  Google Scholar 

  72. F.E.Obenshain, L.A.Page: Phys. Rev.125, 573 (1961)

    Article  ADS  Google Scholar 

  73. A.Bisi, F.Bisi, L.Fasana, L.Zappa: Phys. Rev.122, 1709 (1962)

    Article  ADS  Google Scholar 

  74. W.Brandt, J. Wilkenfeld: (To be published)

  75. W.B.Teutsch, V.W.Hughes: Phys. Rev.103, 1266 (1956)

    Article  ADS  Google Scholar 

  76. W.Brandt, H.Feibus: Phys. Rev.174, 454 (1968); ibid.184, 277 (1969)

    Article  ADS  Google Scholar 

  77. R.W.Crowe, A.H.Sharbaugh, J.K.Bragg: J. Appl. Phys.25, 1480 (1954)

    Article  ADS  Google Scholar 

  78. H.Fröhlich: Proc. Roy. Soc. A160, 230 (1937)

    Article  ADS  Google Scholar 

  79. W.Franz: InHandbuch der Physik, Vol. 17, Ed. by S. Flügge (Springer Verlag, Berlin, Göttingen, Heidelberg 1956), p. 155–263

    Google Scholar 

  80. O.Mogensen: (Preprint) 1973

  81. W.Brandt, P.Kliauga: Phys. Rev. Letters30, 354 (1973), and to be published

    Article  ADS  Google Scholar 

  82. A.Jablonski: Nature131, 839 (1933); Z. Phys.94, 38 (1935)

    Article  ADS  Google Scholar 

  83. R.S.Becker:Theory and Interpretation of Fluorescence and Phosphorescence (Wiley Interscience, New York 1969), p. 2

    Google Scholar 

  84. G.N.Lewis, M.Kasha: J. Amer. Chem. Soc.66, 2100 (1944)

    Article  Google Scholar 

  85. G.N.Lewis, M.Calvin: J. Amer. Chem. Soc.67, 1232 (1945)

    Article  Google Scholar 

  86. G.N.Lewis, M.Calvin, M.Kasha: J. Chem. Phys.17, 804 (1949)

    Article  ADS  Google Scholar 

  87. C.A.Hutchinson,Jr., B.W.Mangum: J. Chem. Phys.29, 952 (1958)

    Article  ADS  Google Scholar 

  88. Cf.J.B.Birks:Photophysics of Aromatic Molecules (Wiley Interscience, New York 1970)

    Google Scholar 

  89. In [74] this ratio was erroneously quoted to be ≈2

  90. R.A.Ferrell: Phys. Rev.113, 1547 (1959)

    Article  Google Scholar 

  91. R.P.Groff, R.E.Merrifield, P.Avakian, Y.Tomkiewicz: Phys. Rev. Letters25, 105 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the United States National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, W. Positron dynamics in solids. Appl. Phys. 5, 1–23 (1974). https://doi.org/10.1007/BF01193389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01193389

Index Heading

Navigation