Skip to main content
Log in

Effective concentration of electrons in metals upon measurements via positron annihilation spectroscopy

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Calculations are performed together with the summarization of published data on the measurement of positron annihilation rates in a number of simple substances. The information potential of different methods underlying positron annihilation spectroscopy is analyzed as applied to the study of condensed matter. The features of the mechanism of positron annihilation in metals are discussed. The possibility of investigating the electronic and defect structures of metals and alloys using the method of the time distribution of annihilation photons is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dannefaer, Phys. Status Solidi A 102 (2), 481 (1987).

    Article  Google Scholar 

  2. W. Deng, D. Pliszka, R. S. Brusa, G. P. Karwasz, and A. Zecca, Acta Phys. Pol., A 101, 875 (2002).

    Article  Google Scholar 

  3. A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, and P. Moser, Phys. Rev. B: Condens. Matter Mater. Phys. 25, 762 (1982).

    Article  Google Scholar 

  4. P. Hautojärvi, J. Johansson, A. Vehanen, J. Yli-Kauppila, and P. Moser, Phys. Rev. Lett. 44, 1326 (1980).

    Article  Google Scholar 

  5. P. Hautojärvi, L. Pöllönen, A. Vehanen, and J. Yli-Kauppila, J. Nucl. Mater. 114, 250 (1983).

    Article  Google Scholar 

  6. V. Slugen, A. Zeman, and P. M. Krsjak, Appl. Surf. Sci. 252, 3309 (2006).

    Article  Google Scholar 

  7. R. S. Brusa, W. Deng, G. P. Karwasz, and A. Zecca, Nucl. Instrum. Methods Phys. Res., Sect. B 194, 519 (2002).

    Article  Google Scholar 

  8. G. P. Karwasz, A. Zecca, R. S. Brusa, and D. Pliszka, J. Alloys Compd. 382, 244 (2004).

    Article  Google Scholar 

  9. A. Baranowski and E. Debowska, Acta Phys. Pol., A 88 (1), 13 (1995).

    Article  Google Scholar 

  10. O. Mogensen and K. Petersen, Phys. Lett. A 30, 542 (1969).

    Article  Google Scholar 

  11. M. Eldrup, O. E. Mogensen, and J. H. Evans, J. Phys. F: Met. Phys. 6, 499 (1976).

    Article  Google Scholar 

  12. V. I. Grafutin and E. P. Prokop’ev, Phys.–Usp. 45 (1), 59 (2002).

    Article  Google Scholar 

  13. A. Seeger and F. Banhart, Phys. Status Solidi A 102, 171 (1987).

    Article  Google Scholar 

  14. G. Dlubek, O. Brummer, N. Meyendorf, P. Hautojarvi, A. Vehanen, and J. Vi-Kauppila, J. Phys. F: Met. Phys. 9, 196 (1979).

    Article  Google Scholar 

  15. Yu. A. Novikov, A. V. Rakov, and V. P. Shantarovich, Sov. Phys. Solid State 36 (6), 1710 (1994).

    Google Scholar 

  16. V. I. Grafutin, E. P. Prokop’ev, G. G. Myasishcheva, and Yu. V. Funtikov, Phys. Solid State 41 (6), 843 (1999).

    Article  Google Scholar 

  17. F. A. Selim, D. P. Wells, J. F. Harmon, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 192, 197 (2002).

    Article  Google Scholar 

  18. J. M. Campillo, et al., J. Phys.: Condens. Matter 19, 176 (2007).

    Google Scholar 

  19. M. J. Puska and R. M. Nieminen, J. Phys. F: Met. Phys. 13, 333 (1983).

    Article  Google Scholar 

  20. M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66 (3), 841 (1994).

    Article  Google Scholar 

  21. A. Rubaszek, Z. Szotek, and W. M. Temmerman, Phys. Rev. B: Condens. Matter Mater. Phys. 58, 11285 (1998).

    Article  Google Scholar 

  22. N. Djourelov and M. Misheva, J. Phys.: Condens. Matter 8, 2081 (1996).

    Google Scholar 

  23. A. Seeger and F. Banhart, Phys. Status Solidi A 102, 171 (1987).

    Article  Google Scholar 

  24. M. A. Monge and J. del Rio, J. Phys.: Condens. Matter 6, 2643 (1994).

    Google Scholar 

  25. E. E. Abdel-Hady, Nucl. Instrum. Methods Phys. Res., Sect. B 221, 225 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Grafutin.

Additional information

Original Russian Text © V.I. Grafutin, E.P. Prokopiev, N.O. Khmelevsky, 2017, published in Poverkhnost’, 2017, No. 1, pp. 69–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grafutin, V.I., Prokopiev, E.P. & Khmelevsky, N.O. Effective concentration of electrons in metals upon measurements via positron annihilation spectroscopy. J. Surf. Investig. 11, 120–124 (2017). https://doi.org/10.1134/S1027451016050505

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016050505

Keywords

Navigation