Skip to main content
Log in

The solution of the positron diffusion trapping model tested for profiling of defects induced by proton implanted in stainless steel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The exact analytical solution of the diffusion trapping model for defect profiling using the variable energy positron beam is reported. The solution is based on the Green’s function valid for the case of a discreet step-like vacancy distribution. The solution is applied to the description of experimental data from slow positron beam measurements for samples of stainless steel exposed to high-energy proton multi-implantation. This implantation ensured to obtain an approximate step-like vacancy distribution. The measured annihilation line shape parameter versus positron incident energy is well described by this solution. The determined positron trapping rate, which is proportional to the concentration of vacancies induced during proton implantation, increases linearly with the total dose. The comparison with the commonly used VEPFIT numerical code is also performed. The presented solution can be an alternative to other numerical codes commonly used for evaluation of data from positron beam experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988)

    Article  ADS  Google Scholar 

  2. R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Defect Studies (Springer, Berlin, Heidelberg, New York, 2000)

    Google Scholar 

  3. J. Dryzek, Nucl. Instrum. Methods Phys. Res. B 196, 186 (2002)

    Article  ADS  Google Scholar 

  4. G.C. Aers, K.O. Jensen, A.B. Walker, in Slow Positron Beam Techniques for Solids and Surfaces, vol. 303, ed. by E. Ottewitte, A.H. Weiss, AIP Conference Proceedings (AIP Press, New York, 1994), p. 13

  5. A. van Veen, H. Schut, J. de Vries, R.A. Hakvoort, W.R. Ijmpa, in Positron beam for solids and surfaces, vol. 218, ed. by J. Schultz, G.R. Massoumi, P.J. Simpson, AIP Conference Proceedings (AIP Press, New York, 1990), p. 171

  6. A.S. Saleh, J.W. Taylor, P.C. Rice-Evans, Appl. Surf. Sci. 149, 87 (1990)

    Article  ADS  Google Scholar 

  7. G.C. Ares, in Positron Beams for Solids and Surfaces, ed. by P.J. Schultz, G.R. Massoumi, P. Simpson (AIP, New York, 1991)

    Google Scholar 

  8. V.A. Stephanovich, J. Dryzek, Phys. Lett. A 377, 3038 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. J. Dryzek, P. Horodek, Nucl. Instrum. Methods Phys. Res. B 266, 4000 (2008)

    Article  ADS  Google Scholar 

  10. V.J. Ghosh, D.O. Welch, K.G. Lynn, in Positron Beam Techniques for Solids and Surfaces, vol. 303, ed. by E. Ottewite, A.H. WeissSlow, Jackson Hole, Wyoming, AIP Conference Proceedings, New York (1994), p. 37

  11. D.T. Britton, P.C. Rice-Evans, J.H. Evans, Philos. Mag. Lett. 57, 165 (1988)

    Article  ADS  Google Scholar 

  12. J. Dryzek, P. Horodek, M. Wróbel, Wear 294–295, 264 (2012)

    Article  Google Scholar 

  13. A.A. Sidorin, I. Meshkov, E. Ahmanova, M. Eseev, A. Kobets, V. Lokhmatov, V. Pavlov, A. Rudakov, S. Yakovenko, The LEPTA facility for fundamental studies of positronium physics and positron spectroscopy. Mater. Sci. Forum 733, 291 (2013)

    Article  Google Scholar 

  14. A.A. Sidorin, I. Meshkov, E. Ahmanova, M. Eseev, A. Kobets, V. Lokhmatov, V. Pavlov, A. Rudakov, S. Yakovenko, Positron annihilation spectroscopy at LEPTA facility. Mater. Sci. Forum 733, 322 (2013)

    Article  Google Scholar 

  15. J. Dryzek, http://www.ifj.edu.pl/~mdryzek/page_r18.html. Accessed 1 Aug 2013

  16. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  17. J.F. Ziegler, J.P. Biersack, http://www.srim.org/SRIM/SRIMINTRO.htm. Accessed 10 April 2012

  18. A.S. Saleh, J. Theor. Appl. Phys. 7, 39 (2013)

    Article  ADS  Google Scholar 

  19. F. Lukáč, J. Čižek, I. Procházka, Y. Jirásková, D. Janičkovič, W. Anwand, G. Brauer, J. Phys: Conf. Ser. 443, 012025 (2013)

    ADS  Google Scholar 

  20. A.P. Knights, F. Malik, P.G. Coleman, Appl. Phys. Lett. 75, 466 (1999)

    Article  ADS  Google Scholar 

  21. H.-E. Schaefer, Phys. Status Solidi A 102, 47 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to M. Kulik, M. Turek, K. Pyszniak and A. Drozdziel for their technical help assistance at ion implantation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Dryzek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dryzek, J., Horodek, P. The solution of the positron diffusion trapping model tested for profiling of defects induced by proton implanted in stainless steel. Appl. Phys. A 121, 289–295 (2015). https://doi.org/10.1007/s00339-015-9433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9433-4

Keywords

Navigation