Skip to main content
Log in

The dimensionality and topology of chemical bonding manifolds in metal clusters and related compounds

  • Review
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The chemical bonding manifolds in metal cluster skeletons (as well as in skeletons of clusters of other elements such as boron or carbon) may be classified according to their dimensionalities and their chemical homeomorphism to various geometric structures. The skeletal bonding manifolds of discrete metal cluster polyhedra may be either one-dimensional edge-localized or three-dimensional globally delocalized, although two-dimensional face-localized skeletal bonding manifolds are possible in a few cases. Electron precise globally delocalized metal cluster polyhedra withv vertices have 2v + 2 skeletal electrons and form deltahedra with no tetrahedral chambers having total skeletal bonding manifolds chemically homeomorphic to a closed ball. Electron-rich metal cluster polyhedra withv vertices have more than 2v + 2 skeletal electrons and form polyhedra with one or more non-triangular faces, whereas electron-poor metal cluster polyhedra withv vertices have less than 2v + 2 skeletal electrons and form deltahedra with one or more tetrahedral chambers. Fusion of metal cluster octahedra by sharing (triangular) faces forms three-dimensional analogues of polycyclic aromatic hydrocarbons such as naphthalene, anthracene, and perinaphthenide. Fusion of metal cluster octahedra by sharing edges can be extended infinitely into one and two dimensions forming chains (e.g. Gd2Cl3) and sheets (e.g. ZrCl), respectively. Infinite extension of such fusion of metal cluster octahedra into all three dimensions leads to bulk metal structures. Unusual anionic platinum carbonyl clusters can be contructed from stacks of Pt3 triangles or Pt5 pentagons. The resulting platinum polyhedra appear to exhibit edge-localized bonding, supplemented by unusual types of delocalized bonding at the top and the bottom of the stacks. Superconducting ternary molybdenum chalcogenides and lanthanide rhodium borides consist of infinite lattices of electronically linked edge-localized Mo6 octahedra or Rh4 tetrahedra, leading naturally to the idea of porous delocalization in superconducting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.F.G. Johnson, ed.,Transition Metal Clusters (Wiley-Interscience, Chichester, England, 1980).

    Google Scholar 

  2. K. Wade, Chem. Commun. (1971) 792.

  3. R.B. King and D.H. Rouvray, J. Amer. Chem. Soc. 99 (1977)7834.

    Google Scholar 

  4. R.B. King, Inorg. Chim. Acta 57 (1982)79.

    Google Scholar 

  5. R.B. King, in:Chemical Applications of Topology and Graph Theory, ed. R.B. King (Elsevier, Amsterdam, 1983) pp. 99–123.

    Google Scholar 

  6. R.B. King, in:Molecular Structure and Energetics, ed. J.F. Liebman and A. Greenberg (VCH, Deerfield Beach, Florida, 1986) pp. 123–148.

    Google Scholar 

  7. D.M.P. Mingos, Nature (London) Phys. Sci. 236 (1972)99.

    Google Scholar 

  8. K. Wade, Adv. Inorg. Chem. Radiochem. 18 (1976)1.

    Google Scholar 

  9. D.M.P. Mingos, Accts. Chem. Res. 17 (1984)311.

    Google Scholar 

  10. J.W. Lauber, J. Amer. Chem. Soc. 100 (1978)5305.

    Google Scholar 

  11. A.J. Stone, Inorg. Chem. 20 (1981)563.

    Google Scholar 

  12. A.J. Stone, Polyhedron 3 (1984)1299.

    Google Scholar 

  13. B.K. Teo, Inorg. Chem. 23 (1984)1251.

    Google Scholar 

  14. B.K. Teo, G. Longoni and F.R.K. Chung, Inorg. Chem. 23 (1984)1257.

    Google Scholar 

  15. B.K. Teo, Inorg. Chem. 24 (1985)115.

    Google Scholar 

  16. B.K. Teo, Inorg. Chem. 24 (1985)4209.

    Google Scholar 

  17. B. Grünbaum,Convex Polytopes (Intersience, New York, 1967).

    Google Scholar 

  18. R.B. King, J. Solid State Chem., in press.

  19. R.B. King, J. Solid State Chem., in press.

  20. M.J. Mansfield,Introduction to Topology (Van Nostrand, Princeton, 1963).

    Google Scholar 

  21. S.F.A. Kettle, Theor. Chim. Acta 3 (1965)282.

    Google Scholar 

  22. R.B. King, Inorg. Chim. Acta 129 (1987)91.

    Google Scholar 

  23. R.B. King, in:Mathematics and Computational Concepts in Chemistry, ed. N. Trinajstić (Harwood, Chichester, 1986) pp. 146–154.

    Google Scholar 

  24. R.B. King, Inorg. Chim. Acta 116 (1986)119.

    Google Scholar 

  25. R.W. Rudolph and W.R. Pretzer, Inorg. Chem. 11 (1972)1974.

    Google Scholar 

  26. R.W. Rudolph, Accts. Chem. Res. 9 (1976)446.

    Google Scholar 

  27. R.B. King, Int. J. Quant. Chem. 20S (1986)227.

    Google Scholar 

  28. R.B. King, Inorg. Chim. Acta 116 (1986)99.

    Google Scholar 

  29. D.W. Bullett, Inorg. Chem. 24 (1985)3319.

    Google Scholar 

  30. C. Kittel,Introduction to Solid State Physics, Third Edition (Wiley, New York, 1966) Chs. 7 and 8.

    Google Scholar 

  31. W.E. Dasent,Inorganic Energetics (Penguin Books, Lts., Baltimore, 1970).

    Google Scholar 

  32. H.E.N. Stone, Acta Metallurgica 27 (1979)259.

    Google Scholar 

  33. Ø. Fischer, M. Decroux, R. Chevrel and M. Sergent, in:Superconductivity in d- and f-Band Metals, ed. D.H. Douglas (Plenum Press, New York, 1976) pp. 176–177.

    Google Scholar 

  34. B.T. Matthias, M. Marezio, E. Corenzwit, A.S. Cooper and H.E. Barz, Science 175 (1972)1465.

    Google Scholar 

  35. S. Foner, E.J. McNiff, Jr. and E.J. Alexander, Phys. Lett. A49 (1974)269.

    Google Scholar 

  36. J.K. Burdett and J.-H. Lin, Inorg. Chem. 21 (1982)5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, R.B. The dimensionality and topology of chemical bonding manifolds in metal clusters and related compounds. J Math Chem 1, 249–265 (1987). https://doi.org/10.1007/BF01179793

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01179793

Keywords

Navigation