Skip to main content

Structure and Bonding of Group 14 Clusters: Wade’s Rules and Beyond

  • Chapter
  • First Online:
50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules

Part of the book series: Structure and Bonding ((STRUCTURE,volume 188))

Abstract

Clusters of group 14 elements show plenty of similarities with borane clusters. As such, chemists often try to understand their structure and bonding on the basis of Wade’s rules to predict and classify various clusters. Such practice, albeit very common, often faces challenges and difficulties due to significant differences in the bonding abilities between group 13 and 14 atoms, as well as the changes in the ionization energies and radial characteristics of atomic orbitals as the groups are descended. In this chapter, we have extensively discussed the structure and bonding of a wide variety of group 14 clusters, including bare clusters, substituent-decorated clusters, endohedral clusters, transition metal doped clusters, and their combinations. By thoroughly analyzing their electronic structures within the framework of molecular orbital theory, we have summarized their bonding patterns and explored the factors that affect the applicability of Wade’s rules in various group 14 clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AdNDP:

Adaptive natural density partitioning

HOMO:

Highest occupied molecular orbital

Hyp:

Hypersilyl, Si(SiMe3)3

LUMO:

Lowest unoccupied molecular orbital

MSA:

Monocapped square antiprism

nc-2e:

n-center-2-electron

PIO:

Principal interacting orbital

PSEPT:

Polyhedral skeletal electron pair theory

SEP:

Skeletal electron pair

TSH:

Tensor surface harmonics

TTP:

Tricapped trigonal prism

References

  1. Fässler TF, Hoffmann R (1999) Novel synthetic route to soluble polyanions: synthesis and crystal structure of [K(18-crown-6)]4[Pb9]·en·tol†. J Chem Soc Dalton Trans:3339–3340

    Google Scholar 

  2. Wade K (1971) The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J Chem Soc Chem Commun 0:792–793

    Google Scholar 

  3. Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17:311–319

    Article  CAS  Google Scholar 

  4. Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice-Hall

    Google Scholar 

  5. Stone AJ (1981) New approach to bonding in transition-metal clusters and related compounds. Inorg Chem 20:563–571

    Article  CAS  Google Scholar 

  6. Welch AJ (2013) The significance and impact of Wade’s rules. Chem Commun 49:3615–3616

    Article  CAS  Google Scholar 

  7. Johnston RL, Mingos DMP (1986) Molecular orbital calculations relevant to the hypercloso vs. iso-closo controversy in metallaboranes. Inorg Chem 25:3321–3323

    Article  CAS  Google Scholar 

  8. Bould J, Greenwood NN, Kennedy JD, McDonald WS (1982) Quantitative ortho-cycloboronation of P-phenyl groups in metallaborane chemistry and the crystal and molecular structure of the novel iso-closo-ten-vertex metallaborane [1,1,1-H(PPh3)(Ph2P-ortho-C6H4)-iso-closo-(1-IrB9H8-2-)]. J Chem Soc Chem Commun:465–467

    Google Scholar 

  9. King RB (2011) Structure and bonding in zintl ions and related main group element clusters. In: Fässler TF (ed) Zintl ions Princ. Recent dev. Springer, Berlin, pp 1–24

    Google Scholar 

  10. Fässler TF (2011) Relationships between soluble zintl anions, ligand-stabilized cage compounds, and intermetalloid clusters of tetrel (Si–Pb) and pentel (P–bi) elements. In: Fässler TF (ed) Zintl ions Princ. Recent dev. Springer, Berlin, pp 91–131

    Chapter  Google Scholar 

  11. Scharfe S, Kraus F, Stegmaier S, Schier A, Fässler TF (2011) Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements. Angew Chem Int Ed 50:3630–3670

    Article  CAS  Google Scholar 

  12. Liu C, Sun Z-M (2019) Recent advances in structural chemistry of group 14 Zintl ions. Coord Chem Rev 382:32–56

    Article  CAS  Google Scholar 

  13. Hoch C, Wendorff M, Röhr C (2003) Synthesis and crystal structure of the tetrelides A12M17 (A=Na, K, Rb, Cs; M=Si, Ge, Sn) and A4Pb9 (A=K, Rb). J Alloys Compd 361:206–221

    Article  CAS  Google Scholar 

  14. Edwards PA, Corbett JD (1977) Stable homopolyatomic anions. Synthesis and crystal structures of salts containing the pentaplumbide(2-) and pentastannide(2-) anions. Inorg Chem 16:903–907

    Article  CAS  Google Scholar 

  15. Goicoechea JM, Sevov SC (2004) Naked deltahedral silicon clusters in solution: synthesis and characterization of Si93− and Si52−. J Am Chem Soc 126:6860–6861

    Google Scholar 

  16. Campbell J, Schrobilgen GJ (1997) The closo-Ge52− anion: synthesis, crystal structure, and raman spectrum of (2,2,2-crypt-K+)2Ge52−·THF. Inorg Chem 36:4078–4081

    Article  CAS  Google Scholar 

  17. Corbett JD, Edwards PA (1975) Stable homopolyatomic anions: the crystal structures of salts of the anions pentaplumbide(2–) and enneastannide(4–). J Chem Soc Chem Commun:984–985

    Google Scholar 

  18. Suchentrunk C, Korber N (2006) Ge52− Zintl anions: synthesis and crystal structures of [K([2.2.2]-crypt)]2Ge5·4NH3 and [Rb([2.2.2]-crypt)]2Ge5·4NH3. New J Chem 30:1737–1739

    Article  CAS  Google Scholar 

  19. Goicoechea JM, Sevov SC (2005) Ligand-free deltahedral clusters of silicon in solution: synthesis, structure, and electrochemistry of Si92–. Inorg Chem 44:2654–2658

    Google Scholar 

  20. Belin CHE, Corbett JD, Cisar A (1977) Homopolyatomic anions and configurational questions. Synthesis and structure of the nonagermanide(2-) and nonagermanide(4-) ions, Ge92− and Ge94−. J Am Chem Soc 99:7163–7169

    Google Scholar 

  21. Spiekermann A, Hoffmann SD, Fässler TF (2006) The zintl ion [Pb10]2−: a rare example of a homoatomic closo cluster. Angew Chem Int Ed 45:3459–3462

    Article  CAS  Google Scholar 

  22. Cui L-F, Huang X, Wang L-M, Zubarev DY, Boldyrev AI, Li J, Wang L-S (2006) Sn122−: stannaspherene. J Am Chem Soc 128:8390–8391

    Article  CAS  PubMed  Google Scholar 

  23. Cui L-F, Huang X, Wang L-M, Li J, Wang L-S (2006) Pb122−: plumbaspherene. J Phys Chem A 110:10169–10172

    Article  CAS  PubMed  Google Scholar 

  24. Cui L-F, Wang L-S (2008) Stable icosahedral hollow cage clusters: stannaspherene and plumbaspherene. Int Rev Phys Chem 27:139–166

    Article  CAS  Google Scholar 

  25. Corbett JD, Edwards PA (1977) The nonastannide(4-) anion Sn94−, a novel capped antiprismatic configuration (C4.Upsilon.). J Am Chem Soc 99:3313–3317

    Article  CAS  Google Scholar 

  26. Yong L, Hoffmann SD, Fässler TF (2006) 2[K4Pb9] – a low-dimensional arrangement of [Pb9]4− clusters in [K(18-crown-6)]2K2Pb9·(en)1.5. Inorg Chim Acta 359:4774–4778

    Article  CAS  Google Scholar 

  27. Schnering HGV, Baitinger M, Bolle U et al (1997) Binary alkali metal compounds with the zintl anions [Ge9]4− and [Sn9]4−. Z Für Anorg Allg Chem 623:1037–1039

    Article  Google Scholar 

  28. Campbell J, Dixon DA, Mercier HPA, Schrobilgen GJ (1995) The nido-Pb94− and the Jahn-Teller distorted closo-Pb93− Zintl anions: syntheses, X-ray structures, and theoretical studies. Inorg Chem 34:5798–5809

    Article  CAS  Google Scholar 

  29. Joseph S, Suchentrunk C, Kraus F, Korber N (2009) Si94− anions in solution – structures of the solvates Rb4Si9·4.75NH3 and [Rb(18-crown-6)]Rb3Si9·4NH3, and chemical bonding in Si94−. Eur J Inorg Chem 2009:4641–4647

    Google Scholar 

  30. Wiesler K, Brandl K, Fleischmann A, Korber N (2009) Tetrahedral [Tt4]4− zintl anions through solution chemistry: syntheses and crystal structures of the ammoniates Rb4Sn4·2NH3, Cs4Sn4·2NH3, and Rb4Pb4·2NH3. Z Für Anorg Allg Chem 635:508–512

    Article  CAS  Google Scholar 

  31. Zhang J-X, Sheong FK, Lin Z (2018) Unravelling chemical interactions with principal interacting orbital analysis. Chem Eur J 24:9639–9650

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J-X, Sheong FK, Lin Z (2020) Principal interacting orbital: a chemically intuitive method for deciphering bonding interaction. WIREs Comput Mol Sci 10:e1469

    Article  CAS  Google Scholar 

  33. Li F, Sevov SC (2014) Synthesis, structures, and solution dynamics of tetrasubstituted nine-atom germanium deltahedral clusters. J Am Chem Soc 136:12056–12063

    Article  CAS  PubMed  Google Scholar 

  34. Geitner FS, Dums JV, Fässler TF (2017) Derivatization of phosphine ligands with bulky deltahedral zintl clusters – synthesis of charge neutral zwitterionic tetrel cluster compounds [(Ge9{Si(TMS)3}2)tBu2P]M(NHCDipp) (M: Cu, Ag, Au). J Am Chem Soc 139:11933–11940

    Article  CAS  PubMed  Google Scholar 

  35. Sevov SC, Goicoechea JM (2006) Chemistry of deltahedral zintl ions. Organometallics 25:5678–5692

    Article  CAS  Google Scholar 

  36. Rios D, Gillett-Kunnath MM, Taylor JD, Oliver AG, Sevov SC (2011) Addition of a thallium vertex to empty and centered nine-atom deltahedral zintl ions of germanium and tin. Inorg Chem 50:2373–2377

    Article  CAS  PubMed  Google Scholar 

  37. Hull MW, Sevov SC (2007) Organo-zintl clusters soluble in conventional organic solvents: setting the stage for organo-zintl cluster chemistry. Inorg Chem 46:10953–10955

    Article  CAS  PubMed  Google Scholar 

  38. Hull MW, Sevov SC (2009) Functionalization of nine-atom deltahedral zintl ions with organic substituents: detailed studies of the reactions. J Am Chem Soc 131:9026–9037

    Article  CAS  PubMed  Google Scholar 

  39. Schnepf A (2003) [Ge9{Si(SiMe3)3}3]: a soluble polyhedral Ge9 cluster stabilized by only three silyl ligands. Angew Chem Int Ed 42:2624–2625

    Article  CAS  Google Scholar 

  40. Li F, Muñoz-Castro A, Sevov SC (2012) [Ge9{Si(SiMe3)3}3SnPh3]: a tetrasubstituted and neutral deltahedral nine-atom cluster. Angew Chem Int Ed 51:8581–8584

    Article  CAS  Google Scholar 

  41. Hull MW, Sevov SC (2007) Addition of alkenes to deltahedral zintl clusters by reaction with alkynes: synthesis and structure of [Fc–CH–CH–Ge9–CH–CH–Fc]2−, an organo-zintl–organometallic anion. Angew Chem Int Ed 46:6695–6698

    Article  CAS  Google Scholar 

  42. Ugrinov A, Sevov SC (2002) [Ph2Bi−(Ge9)−BiPh2]2−: a deltahedral zintl ion functionalized by exo-bonded ligands. J Am Chem Soc 124:2442–2443

    Article  CAS  PubMed  Google Scholar 

  43. Hogeveen H, Kwant PW (1974) Chemistry and spectroscopy in strongly acidic solutions. XL. (CCH3)62+, an unusual dication. J Am Chem Soc 96:2208–2214

    Article  CAS  Google Scholar 

  44. Jašík J, Gerlich D, Roithová J (2014) Probing isomers of the benzene dication in a low-temperature trap. J Am Chem Soc 136:2960–2962

    Article  PubMed  Google Scholar 

  45. Malischewski M, Seppelt K (2017) Crystal structure determination of the pentagonal-pyramidal hexamethylbenzene dication C6(CH3)62+. Angew Chem Int Ed 56:368–370

    Article  CAS  Google Scholar 

  46. Faessler TF, Hunziker M (1994) Ge93− and Pb93−: two novel, naked, homopolyatomic zintl ions with paramagnetic properties. Inorg Chem 33:5380–5381

    Article  CAS  Google Scholar 

  47. Critchlow SC, Corbett JD (1983) Homopolyatomic anions. The synthesis and characterization of the novel paramagnetic nonastannide(3-) anion Sn93−, a D3h cluster with 21 skeletal electrons. J Am Chem Soc 105:5715–5716

    Article  CAS  Google Scholar 

  48. Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217

    Article  CAS  PubMed  Google Scholar 

  49. Tkachenko VN, Boldyrev AI (2019) Multiple local σ-aromaticity of nonagermanide clusters. Chem Sci 10:5761–5765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. King BR, Silaghi-Dumitrescu I (2008) The role of “external” lone pairs in the chemical bonding of bare post-transition element clusters: the Wade–Mingos rules versus the jellium model. Dalton Trans 0:6083–6088

    Google Scholar 

  51. Knight WD, De Heer WA, Saunders WA, Clemenger K, Chou MY, Cohen ML (1987) Alkali metal clusters and the jellium model. Chem Phys Lett 134:1–5

    Article  CAS  Google Scholar 

  52. Lin Z, Slee T, Mingos DMP (1990) A structural jellium model of cluster electronic structure. Chem Phys 142:321–334

    Article  CAS  Google Scholar 

  53. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H (2008) A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci 105:9157–9162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li F, Sevov SC (2012) Rational synthesis of [Ge9{Si(SiMe3)3}3] from its parent zintl ion Ge94−. Inorg Chem 51:2706–2708

    Google Scholar 

  55. Downie C, Mao J-G, Guloy AM (2001) Synthesis and structure of [K+-(2,2)diaza-[18]-crown-6][K3Ge9]·2Ethylenediamine: stabilization of the two-dimensional layer 2[K3Ge91−]. Inorg Chem 40:4721–4725

    Article  CAS  PubMed  Google Scholar 

  56. Ugrinov A, Sevov SC (2004) Rationally functionalized deltahedral zintl ions: synthesis and characterization of [Ge9–ER3]3−, [R3E–Ge9–ER3]2−, and [R3E–Ge9–Ge9–ER3]4− (E=Ge, Sn; R=Me, Ph). Chem Eur J 10:3727–3733

    Article  CAS  PubMed  Google Scholar 

  57. Johnston RL, Mingos DMP (1987) A group theoretical paradigm for describing the skeletal molecular orbitals of cluster compounds. Part 2. Bispherical clusters. J Chem Soc Dalton Trans:1445–1456

    Google Scholar 

  58. Chen Z, Neukermans S, Wang X, Janssens E, Zhou Z, Silverans RE, King RB, Schleyer P von R, Lievens P (2006) To achieve stable spherical clusters: general principles and experimental confirmations. J Am Chem Soc 128:12829–12834

    Google Scholar 

  59. Fässler TF, Hoffmann SD (2004) Endohedral zintl ions: intermetalloid clusters. Angew Chem Int Ed 43:6242–6247

    Article  Google Scholar 

  60. Zhao J, Du Q, Zhou S, Kumar V (2020) Endohedrally doped cage clusters. Chem Rev 120:9021–9163

    Article  CAS  PubMed  Google Scholar 

  61. Arcisauskaite V, Jin X, Goicoechea JM, McGrady JE (2016) Electronic properties of endohedral clusters of group 14. In: Mingos DMP (ed) Chem bond 100 years old get. Stronger. Springer, Cham, pp 181–197

    Chapter  Google Scholar 

  62. Esenturk EN, Fettinger J, Lam Y-F, Eichhorn B (2004) [Pt@Pb12]2−. Angew Chem Int Ed 43:2132–2134

    Article  CAS  Google Scholar 

  63. Esenturk EN, Fettinger J, Eichhorn B (2006) The Pb122− and Pb102− zintl ions and the M@Pb122− and M@Pb102− cluster series where M = Ni, Pd, Pt. J Am Chem Soc 128:9178–9186

    Article  CAS  PubMed  Google Scholar 

  64. Yi W, Lu-Lu W, Hua-Peng R, Ben-Long L, Rui-Li S, Li X (2015) Synthesis and characterization of the endohedral plumbaspherene[Rh@Pb12]3−. Chin J Struc Chem 34:1253–1258

    Google Scholar 

  65. Wang J-Q, Stegmaier S, Wahl B, Fässler TF (2010) Step-by-step synthesis of the endohedral stannaspherene [Ir@Sn12]3− via the capped cluster anion [Sn9Ir(cod)]3−. Chem Eur J 16:1793–1798

    Google Scholar 

  66. Xing X, Tian Z, Liu H, Tang Z (2003) Magic bimetallic cluster anions of M/Pb (M = Au, Ag and Cu) observed and analyzed by laser ablation and time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 17:1411–1415

    Article  CAS  PubMed  Google Scholar 

  67. Neukermans S, Wang X, Veldeman N, Janssens E, Silverans RE, Lievens P (2006) Mass spectrometric stability study of binary MSn clusters (S=Si, Ge, Sn, Pb, and M=Cr, Mn, Cu, Zn). Int J Mass Spectrom 252:145–150

    Article  CAS  Google Scholar 

  68. Cui L-F, Huang X, Wang L-M, Li J, Wang L-S (2007) Endohedral stannaspherenes M@Sn12: a rich class of stable molecular cage clusters. Angew Chem Int Ed 46:742–745

    Article  CAS  Google Scholar 

  69. Liu C, Li L-J, Popov IA, Wilson RJ, Xu C-Q, Li J, Boldyrev AI, Sun Z-M (2018) Symmetry reduction upon size mismatch: the non-icosahedral intermetalloid cluster [Co@Ge12]3−. Chin J Chem 36:1165–1168

    Google Scholar 

  70. Esenturk EN, Fettinger J, Eichhorn B (2005) The closo-Pb102− Zintl ion in the [Ni@Pb10]2− cluster. Chem Commun:247–249

    Google Scholar 

  71. Scharfe S, Fässler TF, Stegmaier S, Hoffmann SD, Ruhland K (2008) [Cu@Sn9]3− and [Cu@Pb9]3−: intermetalloid clusters with endohedral Cu atoms in spherical environments. Chem Eur J 14:4479–4483

    Article  CAS  PubMed  Google Scholar 

  72. Gillett-Kunnath MM, Paik JI, Jensen SM, Taylor JD, Sevov SC (2011) Metal-centered deltahedral zintl ions: synthesis of [Ni@Sn9]4− by direct extraction from intermetallic precursors and of the vertex-fused dimer [{Ni@Sn8(μ-Ge)1/2}2]4−. Inorg Chem 50:11695–11701

    Google Scholar 

  73. Hlukhyy V, He H, Jantke L-A, Fässler TF (2012) The neat ternary solid K5−xCo1−xSn9 with endohedral [Co@Sn9]5− cluster units: a precursor for soluble intermetalloid [Co2@Sn17]5− clusters. Chem Eur J 18:12000–12007

    Article  CAS  PubMed  Google Scholar 

  74. Yue C-Y, Wang M-F, Yuan Z-D, Zhou F-X, Zhang H-P, Lei X-W (2013) K13CoSn17–x (x = 0.1): a new ternary phase containing ­cobalt centered [Sn9] cluster synthesized via high-temperature reaction. Z Für Anorg Allg Chem 639:911–917

    Article  CAS  Google Scholar 

  75. Hlukhyy V, Stegmaier S, van Wüllen L, Fässler TF (2014) Endohedrally filled [Ni@Sn9]4− and [Co@Sn9]5− clusters in the neat solids Na12Ni1−xSn17 and K13−xCo1−xSn17: crystal structure and 119Sn solid-state NMR spectroscopy. Chem Eur J 20:12157–12164

    Article  CAS  PubMed  Google Scholar 

  76. Benda CB, Waibel M, Köchner T, Fässler TF (2014) Reactivity of liquid ammonia solutions of the zintl phase K12Sn17 towards Mesitylcopper(I) and Phosphinegold(I) chloride. Chem Eur J 20:16738–16746

    Article  CAS  PubMed  Google Scholar 

  77. Witzel BJL, Klein W, Dums JV, Boyko M, Fässler TF (2019) Metallocages for metal anions: highly charged [Co@Ge9]5− and [Ru@Sn9]6− clusters featuring spherically encapsulated Co1− and Ru2− anions. Angew Chem Int Ed 58:12908–12913

    Article  CAS  Google Scholar 

  78. Goicoechea JM, Sevov SC (2005) [(Ni-Ni-Ni)@(Ge9)2]4−: a linear triatomic Nickel filament enclosed in a dimer of nine-atom germanium clusters. Angew Chem Int Ed 44:4026–4028

    Article  CAS  Google Scholar 

  79. Goicoechea JM, Sevov SC (2006) Deltahedral germanium clusters: insertion of transition-metal atoms and addition of organometallic fragments. J Am Chem Soc 128:4155–4161

    Article  CAS  PubMed  Google Scholar 

  80. Liu C, Li L-J, Jin X, McGrady JE, Sun Z-M (2018) Reactivity studies of [Co@Sn9]4− with transition metal reagents: bottom-up synthesis of ternary functionalized zintl clusters. Inorg Chem 57:3025–3034

    Article  CAS  PubMed  Google Scholar 

  81. Li L-J, Pan F-X, Li F-Y, Chen Z-F, Sun Z-M (2017) Synthesis, characterization and electronic properties of an endohedral plumbaspherene [Au@Pb12]3−. Inorg Chem Front 4:1393–1396

    Google Scholar 

  82. Zhou B, Krämer T, Thompson AL, McGrady JE, Goicoechea JM (2011) A highly distorted open-shell endohedral zintl cluster: [Mn@Pb12]3−. Inorg Chem 50:8028–8037

    Google Scholar 

  83. Wang J-Q, Stegmaier S, Fässler TF (2009) [Co@Ge10]3−: an intermetalloid cluster with archimedean pentagonal prismatic structure. Angew Chem Int Ed 48:1998–2002

    Article  CAS  Google Scholar 

  84. Zhou B, Denning MS, Kays DL, Goicoechea JM (2009) Synthesis and isolation of [Fe@Ge10]3−: a pentagonal prismatic zintl ion cage encapsulating an interstitial iron atom. J Am Chem Soc 131:2802–2803

    Article  CAS  PubMed  Google Scholar 

  85. Krämer T, Duckworth JCA, Ingram MD, Zhou B, McGrady JE, Goicoechea JM (2013) Structural trends in ten-vertex endohedral clusters, M@E10 and the synthesis of a new member of the family, [Fe@Sn10]3−. Dalton Trans 42:12120–12129

    Article  PubMed  Google Scholar 

  86. Sevov SC, Corbett JD (1993) Potassium indium zinc compound K8In10Zn: interstitially-stabilized analogs of early-transition-metal halide clusters. Inorg Chem 32:1059–1061

    Article  CAS  Google Scholar 

  87. Sevov SC, Corbett JD (1993) K10In10Z (Z = Ni, Pd, Pt): Zintl phases containing isolated decaindium clusters centered by transition elements. J Am Chem Soc 115:9089–9094

    Article  CAS  Google Scholar 

  88. Espinoza-Quintero G, Duckworth JCA, Myers WK, McGrady JE, Goicoechea JM (2014) Synthesis and characterization of [Ru@Ge12]3−: an endohedral 3-connected cluster. J Am Chem Soc 136:1210–1213

    Article  CAS  PubMed  Google Scholar 

  89. Beck SM (1987) Studies of silicon cluster–metal atom compound formation in a supersonic molecular beam. J Chem Phys 87:4233–4234

    Article  CAS  Google Scholar 

  90. Janssens E, Gruene P, Meijer G, Wöste L, Lievens P, Fielicke A (2007) Argon physisorption as structural probe for endohedrally doped silicon clusters. Phys Rev Lett 99:063401

    Article  PubMed  Google Scholar 

  91. Pandey R, Rao BK, Jena P, Blanco MA (2001) Electronic structure and properties of transition metal−benzene complexes. J Am Chem Soc 123:3799–3808

    Article  CAS  PubMed  Google Scholar 

  92. Khanna SN, Rao BK, Jena P (2002) Magic numbers in metallo-inorganic clusters: chromium encapsulated in silicon cages. Phys Rev Lett 89:016803

    Article  CAS  PubMed  Google Scholar 

  93. Ulises Reveles J, Khanna SN (2006) Electronic counting rules for the stability of metal-silicon clusters. Phys Rev B 74:035435

    Article  Google Scholar 

  94. Guo L, Zhao G, Gu Y, Liu X, Zeng Z (2008) Density-functional investigation of metal-silicon cage clusters MSin (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n=8–16). Phys Rev B 77:195417

    Article  Google Scholar 

  95. Abreu MB, Reber AC, Khanna SN (2014) Does the 18-electron rule apply to CrSi12? J Phys Chem Lett 5:3492–3496

    Article  CAS  PubMed  Google Scholar 

  96. Goicoechea JM, McGrady JE (2015) On the structural landscape in endohedral silicon and germanium clusters, M@Si12 and M@Ge12. Dalton Trans 44:6755–6766

    Article  CAS  PubMed  Google Scholar 

  97. Goicoechea JM, Sevov SC (2006) Organozinc derivatives of deltahedral zintl ions: synthesis and characterization of closo-[E9Zn(C6H5)]3− (E = Si, Ge, Sn, Pb). Organometallics 25:4530–4536

    Article  CAS  Google Scholar 

  98. Zhou B, Denning MS, Chapman TAD, Goicoechea JM (2009) Coupling reactions of functionalized zintl ions [E9Cd(C6H5)]3− (E = Sn, Pb) with tributyltinhydride: synthesis and isolation of {Sn9CdSn[(CH2)3CH3]3}3−. Inorg Chem 48:2899–2907

    Article  CAS  PubMed  Google Scholar 

  99. Zhou B, Denning MS, Jones C, Goicoechea JM (2009) Reductive cleavage of Zn–C bonds by group 14 Zintl anions: synthesis and characterisation of [E9ZnR]3− (E = Ge, Sn, Pb; R = Mes, iPr). Dalton Trans 0:1571–1578

    Google Scholar 

  100. Li F, Muñoz-Castro A, Sevov SC (2016) [(Me3Si)Si]3EtGe9Pd(PPh3)], a pentafunctionalized deltahedral zintl cluster: synthesis, structure, and solution dynamics. Angew Chem Int Ed 55:8630–8633

    Google Scholar 

  101. Townrow OPE, Chung C, Macgregor SA, Weller AS, Goicoechea JM (2020) A neutral heteroatomic zintl cluster for the catalytic hydrogenation of cyclic alkenes. J Am Chem Soc 142:18330–18335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kesanli B, Fettinger J, Eichhorn B (2001) The closo-[Sn9M(CO)3]4− zintl ion clusters where M=Cr, Mo, W: two structural isomers and their dynamic behavior. Chem Eur J 7:5277–5285

    Article  CAS  PubMed  Google Scholar 

  103. Eichhorn BW, Haushalter RC (1990) Closo-[CrPb9(CO)3]4−: a 100 year history of the nonaplumbide tetra-anion. J Chem Soc Chem Commun:937–938

    Google Scholar 

  104. Campbell J, Mercier HPA, Franke H, Santry DP, Dixon DA, Schrobilgen GJ (2002) Syntheses, crystal structures, and density functional theory calculations of the closo-[1-M(CO)34-E9)]4− (E = Sn, Pb; M = Mo, W) cluster anions and solution NMR spectroscopic characterization of [1-M(CO)34-Sn9)]4− (M = Cr, Mo, W). Inorg Chem 41:86–107

    Article  CAS  PubMed  Google Scholar 

  105. Yong L, Hoffmann SD, Fässler TF (2005) Crystal structures of [K(2.2.2-crypt)]4[Pb9Mo(CO)3] – isolation of the novel isomers [(η5-Pb9)Mo(CO)3]4− beside [(η4-Pb9)Mo(CO)3]4−. Eur J Inorg Chem 2005:3663–3669

    Google Scholar 

  106. Mingos DMP, Zhenyang L (1989) Site preference effects in heterometallic clusters. Comments Inorg Chem 9:95–122

    Article  CAS  Google Scholar 

  107. Schiegerl LJ, Geitner FS, Fischer C, Klein W, Fässler TF (2016) Functionalization of [Ge9] with small silanes: [Ge9(SiR3)3] (R = iBu, iPr, Et) and the structures of (CuNHCDipp)[Ge9{Si(iBu)3}3], (K-18c6)Au[Ge9{Si(iBu)3}3]2, and (K-18c6)2[Ge9{Si(iBu)3}2]. Z Für Anorg Allg Chem 642:1419–1426

    Article  CAS  Google Scholar 

  108. Michenfelder NC, Gienger C, Schnepf A, Unterreiner A-N (2019) The influence of the FeCp(CO)2+ moiety on the dynamics of the metalloid [Ge9(Si(SiMe3)3)3] cluster in thf: synthesis and characterization by time-resolved absorption spectroscopy. Dalton Trans 48:15577–15582

    Article  CAS  PubMed  Google Scholar 

  109. Schenk C, Schnepf A (2009) {Ge9R3Cr(CO)5} and {Ge9R3Cr(CO)3} : a metalloid cluster (Ge9R3) as a flexible ligand in coordination chemistry [R = Si(SiMe3)3]. Chem Commun:3208–3210

    Google Scholar 

  110. Henke F, Schenk C, Schnepf A (2011) [Si(SiMe3)3]3Ge9M(CO)3 (M = Cr, Mo, W): coordination chemistry with metalloid clusters. Dalton Trans 40:6704–6710

    Article  CAS  PubMed  Google Scholar 

  111. Sun Z-M, Zhao Y-F, Li J, Wang L-S (2009) Diversity of functionalized germanium zintl clusters: syntheses and theoretical studies of [Ge9PdPPh3]3− and [Ni@(Ge9PdPPh3)]2−. J Clust Sci 20:601–609

    Google Scholar 

  112. Kesanli B, Fettinger J, Gardner DR, Eichhorn B (2002) The [Sn9Pt2(PPh3)]2− and [Sn9Ni2(CO)]3− complexes: two markedly different Sn9M2L transition metal zintl ion clusters and their dynamic behavior. J Am Chem Soc 124:4779–4786

    Article  CAS  PubMed  Google Scholar 

  113. Geitner FS, Klein W, Storcheva O, Tilley TD, Fässler TF (2019) Early-transition-metal complexes of functionalized nonagermanide clusters: synthesis and characterization of [Cp2(MeCN)Ti(η1-Ge9{Si(TMS)3}3)] and K3[Cp2Ti(η1-Ge9{Si(TMS)3}2)2]. Inorg Chem 58:13293–13298

    Article  CAS  PubMed  Google Scholar 

  114. Kysliak O, Schrenk C, Schnepf A (2016) Reactivity of [Ge9{Si(SiMe3)3}3] towards transition-metal M2+ cations: coordination and redox chemistry. Chem Eur J 22:18787–18793

    Article  CAS  PubMed  Google Scholar 

  115. Kocak FS, Zavalij P, Eichhorn B (2011) Reactions of exo-substituted RSn93− clusters with Pd: endohedral cluster formation and oxidative insertion. Chem Eur J 17:4858–4863

    Article  CAS  PubMed  Google Scholar 

  116. Geitner FS, Fässler TF (2016) Introducing tetrel zintl ions to N-heterocyclic carbenes – synthesis of coinage metal NHC complexes of [Ge9{Si(SiMe3)3}3]. Eur J Inorg Chem 2016:2688–2691

    Google Scholar 

  117. Mayer K, Schiegerl LJ, Fässler TF (2016) On the reactivity of silylated Ge9 clusters: synthesis and characterization of [ZnCp*(Ge9{Si(SiMe3)3}3)], [CuPiPr3(Ge9{Si(SiMe3)3}3)], and [(CuPiPr3)4{Ge9(SiPh3)2}2]. Chem Eur J 22:18794–18800

    Article  CAS  PubMed  Google Scholar 

  118. Geitner FS, Klein W, Fässler TF (2018) Synthesis and reactivity of multiple phosphine-functionalized nonagermanide clusters. Angew Chem Int Ed 57:14509–14513

    Article  CAS  Google Scholar 

  119. Geitner FS, Wallach C, Fässler TF (2018) On the variable reactivity of phosphine-functionalized [Ge9] clusters: zintl cluster-substituted phosphines or phosphine-substituted zintl clusters. Chem Eur J 24:4103–4110

    Article  CAS  PubMed  Google Scholar 

  120. Downing DO, Zavalij P, Eichhorn BW (2010) The closo-[Sn9Ir(cod)]3− and [Pb9Ir(cod)]3− zintl ions: isostructural IrI derivatives of the nido-E94− anions (E = Sn, Pb). Eur J Inorg Chem 2010:890–894

    Article  Google Scholar 

  121. Geitner FS, Klein W, Fässler TF (2017) Formation of the intermetalloid cluster [AgSn18]7− − the reactivity of coinage metal NHC compounds towards [Sn9]4−. Dalton Trans 46:5796–5800

    Google Scholar 

  122. Scharfe S, Fässler TF (2010) Varying bonding modes of the zintl ion [Ge9]4− in CuI complexes: syntheses and structures of [Cu(η4-Ge9)(PR3)]3– (R = iPr, Cy) and [Cu(η4-Ge9)(η1-Ge9)]7−. Eur J Inorg Chem 2010:1207–1213

    Google Scholar 

  123. Esenturk EN, Fettinger J, Eichhorn B (2006) Synthesis and characterization of the [Ni6Ge13(CO)5]4− and [Ge9Ni2(PPh3)]2− Zintl ion clusters. Polyhedron 25:521–529

    Article  CAS  Google Scholar 

  124. Li F, Sevov SC (2015) Coordination of tri-substituted Nona–Germanium clusters to Cu(I) and Pd(0). Inorg Chem 54:8121–8125

    Article  CAS  PubMed  Google Scholar 

  125. Schenk C, Schnepf A (2007) [AuGe18{Si(SiMe3)3}6]: a soluble Au–Ge cluster on the way to a molecular cable? Angew Chem Int Ed 46:5314–5316

    Article  CAS  Google Scholar 

  126. Henke F, Schenk C, Schnepf A (2009) [Si(SiMe3)3]6Ge18M (M = Zn, Cd, Hg): neutral metalloid cluster compounds of germanium as highly soluble building blocks for supramolecular chemistry. Dalton Trans:9141–9145

    Google Scholar 

  127. Schenk C, Henke F, Santiso-Quiñones G, Krossing I, Schnepf A (2008) [Si(SiMe3)3]6Ge18M (M = Cu, Ag, Au): metalloid cluster compounds as unusual building blocks for a supramolecular chemistry. Dalton Trans:4436–4441

    Google Scholar 

  128. Kysliak O, Schrenk C, Schnepf A (2015) {Ge9[Si(SiMe3)2(SiPh3)]3}: ligand modification in metalloid germanium cluster chemistry. Inorg Chem 54:7083–7088

    Article  CAS  PubMed  Google Scholar 

  129. Kysliak O, Kunz T, Schnepf A (2017) Metalloid Ge9R3 clusters with various silyl substituents: from shielded to open cluster cores. Eur J Inorg Chem 2017:805–810

    Article  CAS  Google Scholar 

  130. Binder M, Schrenk C, Block T, Pöttgen R, Schnepf A (2017) [Hyp-Au-Sn9(Hyp)3-Au-Sn9(Hyp)3-Au-Hyp]: the longest intermetalloid chain compound of tin. Chem Commun 53:11314–11317

    Article  CAS  Google Scholar 

  131. Kysliak O, Nguyen DD, Clayborne AZ, Schnepf A (2018) [PtZn2Ge18(Hyp)8] (Hyp = Si(SiMe3)3): a neutral polynuclear chain compound with Ge9(Hyp)3 units. Inorg Chem 57:12603–12609

    Article  CAS  PubMed  Google Scholar 

  132. Denning MS, Goicoechea JM (2008) [Hg3(Ge9)4]10− : a nanometric molecular rod precursor to polymeric mercury-linked cluster chains. Dalton Trans:5882–5885

    Google Scholar 

  133. Nienhaus A, Hauptmann R, Fässler TF (2002) 1[HgGe9]2− – a polymer with zintl ions as building blocks covalently linked by heteroatoms. Angew Chem Int Ed 41:3213–3215

    Article  CAS  Google Scholar 

  134. Bentlohner MM, Jantke L-A, Henneberger T, Fischer C, Mayer K, Klein W, Fässler TF (2016) On the nature of bridging metal atoms in intermetalloid clusters: synthesis and structure of the metal-atom-bridged zintl clusters [Sn(Ge9)2]4− and [Zn(Ge9)2)]6−. Chem Eur J 22:13946–13952

    Google Scholar 

  135. Yong L, Boeddinghaus MB, Fässler TF (2010) [Sn9HgSn9]6−: an intermetalloid zintl ion with two Sn9 connected by heteroatom. Z Für Anorg Allg Chem 636:1293–1296

    Article  CAS  Google Scholar 

  136. Mayer K, Jantke L-A, Schulz S, Fässler TF (2017) Retention of the Zn−Zn bond in [Ge9Zn−ZnGe9]6− and formation of [(Ge9Zn)−(Ge9)−(ZnGe9)]8− and polymeric [−(Ge9Zn)2−−]. Angew Chem Int Ed 56:2350–2355

    Article  CAS  Google Scholar 

  137. Zhang C, Morgan HWT, Wang Z-C, Liu C, Sun Z-M, McGrady JE (2019) Structural isomerism in the [(Ni@Sn9)In(Ni@Sn9)]5− Zintl ion. Dalton Trans 48:15888–15895

    Article  CAS  PubMed  Google Scholar 

  138. Spiekermann A, Hoffmann SD, Kraus F, Fässler TF (2007) [Au3Ge18]5− – a gold–germanium cluster with remarkable Au–Au interactions. Angew Chem Int Ed 46:1638–1640

    Article  Google Scholar 

  139. Schmidbaur H (2000) The aurophilicity phenomenon: a decade of experimental findings, theoretical concepts and emerging applications. Gold Bull 33:3–10

    Article  CAS  Google Scholar 

  140. Joseph S, Hamberger M, Mutzbauer F, Härtl O, Meier M, Korber N (2009) Chemistry with bare silicon clusters in solution: a transition-metal complex of a polysilicide anion. Angew Chem Int Ed 48:8770–8772

    Article  CAS  Google Scholar 

  141. Sheong FK, Chen W-J, Zhang J-X, Li Y, Lin Z (2017) Structure and bonding of [Pd2Sn18]4−: an interesting example of the mutual delocalisation phenomenon. Dalton Trans 46:2214–2219

    Article  CAS  PubMed  Google Scholar 

  142. Ugrinov A, Sevov SC (2003) Derivatization of deltahedral zintl ions by nucleophilic addition: [Ph−Ge9−SbPh2]2− and [Ph2Sb−Ge9−Ge9−SbPh2]4−. J Am Chem Soc 125:14059–14064

    Google Scholar 

  143. Hull MW, Ugrinov A, Petrov I, Sevov SC (2007) Alkylation of deltahedral zintl clusters: synthesis of [R−Ge9−Ge9−R]4− (R = tBu, sBu, nBu, tAm) and structure of [tBu−Ge9−Ge9tBu]4−. Inorg Chem 46:2704–2708

    Google Scholar 

  144. First Synthesis of Group-14 Polyanions by Extraction of a Binary Alloy with dmf and a Novel Conformation of the (Ge9−Ge9)6− Dimer: Crystal Structures of [K6(Ge9−Ge9)](dmf)12, [Rb6(Ge9−Ge9)](dmf)12 and [K2.5Cs3.5(Ge9−Ge9)](dmf)12 (2006) Z Für Anorg Allg Chem 632:1752–1758

    Google Scholar 

  145. Xu L, Sevov SC (1999) Oxidative coupling of deltahedral [Ge9]4− zintl ions. J Am Chem Soc 121:9245–9246

    Article  CAS  Google Scholar 

  146. Wang J-Q, Wahl B, Fässler TF (2010) [Ag(Sn9–Sn9)]5−: a homoleptic silver complex of a dimeric Sn9 zintl anion. Angew Chem Int Ed 49:6592–6595

    Article  CAS  Google Scholar 

  147. Hansen DF, Zhou B, Goicoechea JM (2012) Further studies into the reactivity and coordination chemistry of [Ge9]4− zintl ions. The indium-containing anions [In(Ge9)2]5−, [(Ge9)2In(C6H5)]4− and [Ge9{In(C6H5)3}2]4−. J Organomet Chem 721–722:53–61

    Article  Google Scholar 

  148. Ugrinov A, Sevov SC (2005) Synthesis of a chain of nine-atom germanium clusters accompanied with dimerization of the sequestering agent. Comptes Rendus Chim 8:1878–1882

    Article  CAS  Google Scholar 

  149. Downie C, Tang Z, Guloy AM (2000) An unprecedented 1[Ge9]2− polymer: a link between molecular zintl clusters and solid-state phases. Angew Chem 112:346–348

    Article  Google Scholar 

  150. Downie C, Mao J-G, Parmar H, Guloy AM (2004) The role of sequestering agents in the formation and structure of germanium anion cluster polymers. Inorg Chem 43:1992–1997

    Article  CAS  PubMed  Google Scholar 

  151. Perla LG, Sevov SC (2016) A stannyl-decorated zintl ion [Ge18Pd3(SniPr3)6]2−: twinned icosahedron with a common Pd3-face or 18-vertex hypho-deltahedron with a Pd3-triangle inside. J Am Chem Soc 138:9795–9798

    Article  CAS  PubMed  Google Scholar 

  152. Perla LG, Muñoz-Castro A, Sevov SC (2017) Eclipsed- and staggered-[Ge18Pd3{EiPr3}6]2− (E = Si, Sn): positional isomerism in deltahedral zintl clusters. J Am Chem Soc 139:15176–15181

    Article  CAS  PubMed  Google Scholar 

  153. Zhang J-X, Sheong FK, Lin Z (2019) Remote bonding in clusters [Pd3Ge18R6]2−: modular bonding model for large clusters via principal interacting orbital analysis. Inorg Chem 58:3473–3478

    Article  CAS  PubMed  Google Scholar 

  154. Goicoechea JM, Sevov SC (2005) [(Pd−Pd)@Ge18]4−: a palladium dimer inside the largest single-cage deltahedron. J Am Chem Soc 127:7676–7677

    Article  CAS  PubMed  Google Scholar 

  155. Sun Z-M, Xiao H, Li J, Wang L-S (2007) Pd2@Sn184−: fusion of two endohedral stannaspherenes. J Am Chem Soc 129:9560–9561

    Article  CAS  PubMed  Google Scholar 

  156. Ugrinov A, Sevov SC (2002) [Ge9Ge9Ge9]6−: a linear trimer of 27 germanium atoms. J Am Chem Soc 124:10990–10991

    Article  CAS  PubMed  Google Scholar 

  157. Ugrinov A, Sevov SC (2003) [Ge9Ge9Ge9Ge9]8−: a linear tetramer of nine-atom germanium clusters, a nanorod. Inorg Chem 42:5789–5791

    Article  CAS  PubMed  Google Scholar 

  158. Stegmaier S, Fässler TF (2011) A bronze matryoshka: the discrete intermetalloid cluster [Sn@Cu12@Sn20]12− in the ternary phases A12Cu12Sn21 (A = Na, K). J Am Chem Soc 133:19758–19768

    Article  CAS  PubMed  Google Scholar 

  159. Sheong FK, Chen W-J, Kim H, Lin Z (2015) Peeling the onion: a revised model of the electron count for matryoshka clusters. Dalton Trans 44:7251–7257

    Article  CAS  PubMed  Google Scholar 

  160. Moses MJ, Fettinger JC, Eichhorn BW (2003) Interpenetrating As20 fullerene and Ni12 icosahedra in the onion-skin [As@Ni12@As20]3− ion. Science 300:778–780

    Article  CAS  PubMed  Google Scholar 

  161. Bashkurov R, Kratish Y, Fridman N, Bravo-Zhivotovskii D, Apeloig Y (2021) A high yield synthesis of an octastannacubane and a Bis(silyl) stannylene via reductive elimination of a silane. Angew Chem Int Ed 60:2898–2902

    Article  CAS  Google Scholar 

  162. Wiberg N, Finger CMM, Polborn K (1993) Tetrakis(tri-tert-butylsilyl)-tetrahedro-tetrasilane (tBu3Si)4Si4: the first molecular silicon compound with a Si4 tetrahedron. Angew Chem Int Ed Engl 32:1054–1056

    Article  Google Scholar 

  163. Wiberg N, Hochmuth W, Nöth H, Appel A, Schmidt-Amelunxen M (1996) Tetrakis(tri-tert-butylsilyl)-tetrahedro-tetragermane (tBu3Si)4Ge4 – the first molecular germanium compound with a Ge4 tetrahedron. Angew Chem Int Ed Engl 35:1333–1334

    Article  CAS  Google Scholar 

  164. Wiberg N, Lemer H-W, Wagner S, Nöth H, Seifert T (1999) Über das Octastannandiid R*6Sn8[Na(THF)2]2 und zur möglichen Existenz des Octastannans R*6Sn8 [1] / on an Octastannanediide R*6Sn8[Na(THF)2]2 and the possible existence of an octastannane R*6Sn8 [1]. Z Für Naturforschung B 54:877–880

    Article  CAS  Google Scholar 

  165. Ichinohe M, Toyoshima M, Kinjo R, Sekiguchi A (2003) Tetrasilatetrahedranide: a silicon cage anion. J Am Chem Soc 125:13328–13329

    Article  CAS  PubMed  Google Scholar 

  166. Klapötke TM, Vasisht SK, Fischer G, Mayer P (2010) A reactive Si4 cage: K(SitBu3)3Si4. J Organomet Chem 695:667–672

    Article  Google Scholar 

  167. Schnepf A, Köppe R (2003) [Ge8{N(SiMe3)2}6]: a ligand-stabilized Ge cluster compound with formally zero-valent Ge atoms. Angew Chem Int Ed 42:911–913

    Article  CAS  Google Scholar 

  168. Fischer G, Huch V, Mayer P, Vasisht SK, Veith M, Wiberg N (2005) Si8(SitBu3)6: a hitherto unknown cluster structure in silicon chemistry. Angew Chem Int Ed 44:7884–7887

    Article  CAS  Google Scholar 

  169. Eichler BE, Power PP (2001) Synthesis and characterization of [Sn8(2,6-Mes2C6H3)4] (Mes=2,4,6-Me3C6H2): a main group metal cluster with a unique structure. Angew Chem 113:818–819

    Article  Google Scholar 

  170. Schnepf A, Drost C (2005) Ge8R6: the ligands define the bonding situation within the cluster core. Dalton Trans:3277–3280

    Google Scholar 

  171. Schnepf A (2006) {Ge10Si[Si(SiMe3)3]4(SiMe3)2Me}: a Ge10Si framework reveals a structural transition onto elemental germanium. Chem Commun:192–194

    Google Scholar 

  172. Wu W, Gu J, Song J, Shaik S, Hiberty PC (2009) The inverted bond in [1.1.1]propellane is a charge-shift bond. Angew Chem Int Ed 48:1407–1410

    Article  CAS  Google Scholar 

  173. Shaik S, Danovich D, Wu W, Hiberty PC (2009) Charge-shift bonding and its manifestations in chemistry. Nat Chem 1:443–449

    Article  CAS  PubMed  Google Scholar 

  174. Shaik S, Danovich D, Galbraith JM, Braïda B, Wu W, Hiberty PC (2019) Charge-shift bonding: a new and unique form of bonding. Angew Chem Int Ed 59:984–1001

    Article  Google Scholar 

  175. Wiederkehr J, Wölper C, Schulz S (2016) Synthesis and solid state structure of a metalloid tin cluster [Sn10(trip8)]. Chem Commun 52:12282–12285

    Article  CAS  Google Scholar 

  176. Sekiguchi A, Ishida Y, Kabe Y, Ichinohe M (2002) The cation cluster of heavier group 14 elements: a free germyl cation with trishomoaromaticity. J Am Chem Soc 124:8776–8777

    Article  CAS  PubMed  Google Scholar 

  177. Spiekermann A, Hoffmann SD, Fässler TF, Krossing I, Preiss U (2007) [Au3Ge45]9− – a binary anion containing a Ge45 cluster. Angew Chem Int Ed 46:5310–5313

    Article  CAS  Google Scholar 

  178. Schenk C, Schnepf A (2008) Ge14[Ge(SiMe3)3]5Li3(THF)6 : the largest metalloid cluster compound of germanium: on the way to fullerene -like compounds? Chem Commun:4643–4645

    Google Scholar 

  179. Lips F, Clérac R, Dehnen S (2011) [Eu@Sn6Bi8]4−: a mini-fullerane-type zintl anion containing a lanthanide ion. Angew Chem Int Ed 50:960–964

    Article  CAS  Google Scholar 

  180. Lips F, Clérac R, Dehnen S (2011) [Pd3Sn8Bi6]4−: a 14-vertex Sn/bi cluster embedding a Pd3 triangle. J Am Chem Soc 133:14168–14171

    Article  CAS  PubMed  Google Scholar 

  181. Mitzinger S, Broeckaert L, Massa W, Weigend F, Dehnen S (2015) [V@Ge8As4]3− and [Nb@Ge8As6]3− : encapsulation of electron-poor transition metal atoms. Chem Commun 51:3866–3869

    Article  CAS  Google Scholar 

  182. Schrenk C, Schellenberg I, Pöttgen R, Schnepf A (2010) The formation of a metalloid Sn10[Si(SiMe3)3]6 cluster compound and its relation to the α↔β tin phase transition. Dalton Trans 39:1872–1876

    Article  CAS  PubMed  Google Scholar 

  183. Klinkhammer KW, Xiong Y, Yao S (2004) Molecular lead clusters – from unexpected discovery to rational synthesis. Angew Chem Int Ed 43:6202–6204

    Article  CAS  Google Scholar 

  184. Schrenk C, Helmlinger J, Schnepf A (2012) Sn10[Si(SiMe3)3]5: an anionic metalloid tin cluster from an isolable SnI halide solution. Z Für Anorg Allg Chem 638:589–593

    Article  CAS  Google Scholar 

  185. Schrenk C, Gerke B, Pöttgen R, Clayborne A, Schnepf A (2015) Reactions with a metalloid tin cluster Sn10[Si(SiMe3)3]42−: ligand elimination versus coordination chemistry. Chem Eur J 21:8222–8228

    Article  CAS  PubMed  Google Scholar 

  186. Schrenk C, Winter F, Pöttgen R, Schnepf A (2015) Sn10[Si(SiMe3)3]42−: a highly reactive metalloid tin cluster with an open ligand shell. Chem Eur J 21:2992–2997

    Article  CAS  PubMed  Google Scholar 

  187. Kiani FA, Hofmann M (2006) Cluster increments for macropolyhedral boranes. Dalton Trans:5515–5520

    Google Scholar 

  188. Sheong FK, Zhang J-X, Lin Z (2017) Localized bonding model for coordination and cluster compounds. Coord Chem Rev 345:42–53

    Article  CAS  Google Scholar 

  189. Liu C, Popov IA, Li L-J, Li N, Boldyrev AI, Sun Z-M (2018) [Co2@Ge16]4−: localized versus delocalized bonding in two isomeric intermetalloid clusters. Chem Eur J 24:699–705

    Article  CAS  PubMed  Google Scholar 

  190. Liu C, Jin X, Li L-J, Xu J, McGrady JE, Sun Z-M (2019) Synthesis and structure of a family of rhodium polystannide clusters [Rh@Sn10]3−, [Rh@Sn12]3−, [Rh2@Sn17]6− and the first triply-fused stannide, [Rh3@Sn24]5−. Chem Sci 10:4394–4401

    Google Scholar 

  191. Shu C-C, Morgan HWT, Qiao L, McGrady JE, Sun Z-M (2020) A family of lead clusters with precious metal cores. Nat Commun 11:3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to dedicate this chapter to the memory of Roy Johnston who made seminal contribution in the application of molecular orbital theory to the understanding of structure and bonding in molecular cluster compounds. We would also like to acknowledge the financial support from the Hong Kong Research Grants Council (HKUST 16305119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu Kit Sheong or Zhenyang Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, JX., Sheong, F.K., Lin, Z. (2021). Structure and Bonding of Group 14 Clusters: Wade’s Rules and Beyond. In: Mingos, D. (eds) 50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules . Structure and Bonding, vol 188. Springer, Cham. https://doi.org/10.1007/430_2021_84

Download citation

Publish with us

Policies and ethics