Skip to main content
Log in

On topological charge stabilization in heterocyclic compounds

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Abstract

According to Gimarc's principle of topological chargestabilization, heteroatomic molecules are topologically stabilized when more electronegative atoms are placed in those positions where atom-atom connectivity and the electron-filling level provide the highest electron charge in the reference hydrocarbon frame. Recently, we showed that the relative atomic moments of energy (the frequencies of atomic self-returning walks) in such uniform molecular skeletons are equal to the respective squared principal eigenvector coefficients. We show here that for conjugated heteroryclic molecules these partial atomic charges follow closely the patterns mirrored by topological charge stabilization and, by producing a nonuniform charge distribution in alternant molecules, enable the broader application of this principle to such molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Communications in Mathematical Chemistry (MATCH), Mulheim (Ruhr), founded in 1975 by O. E. Polansky.

  2. Journal of Mathematical Chemistry, D. H. Rouvray (first edn.), founded in 1987 by the International Society for Mathematical Chemistry.

  3. Application of Mathematical Concepts to Chemistry, N. Trinajstic (ed.), Ellis Horwood, Chichester (1985).

    Google Scholar 

  4. I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry. Berlin: Springer-Verlag (1986).

    Google Scholar 

  5. Mathematical Chemistry Series, D. Bonchev and D. H. Rouvray (eds.), 1, Chemical Graph Theory. Introduction and Fundamentals. Reading (U. K.): Gordon and Breach (1991).

    Google Scholar 

  6. Mathematical Chemistry Series, D. Bonchev and D. H. Rouvray, 2, Chemistry Graph Theory. Reactivity and Kinetics. Reading (U. K.): Gordon and Breach (1992).

    Google Scholar 

  7. Mathematical Chemistry Series, D. Bonchev and D. H. Rouvray, 3, Chemical Group Theory. Introduction and Fundamentals. Reading (U. K.): Gordon and Breach (1994).

    Google Scholar 

  8. Mathematical Chemistry Series, D. Bonchev and D. H. Rouvray (eds.), 1, Chemical Group Theory. Techniques and Applications. Reading (U. K.): Gordon and Breach (1995).

    Google Scholar 

  9. Chemical Applications of Graph Theory, A. T. Balaban (ed.), London: Academic Press (1976).

    Google Scholar 

  10. Chemical Applications of Topology and Graph Theory, R. B. King (ed.), Amsterdam: Elsevier (1983).

    Google Scholar 

  11. D. Bonchev, Information Theoretic Characterization of Chemical Structures, Chichester (1983).

  12. Graph Theory and Topology in Chemistry, R. B. King and D. H. Rouvray (eds.), Amsterdam: Elsevier (1987).

    Google Scholar 

  13. M. I. Stankevich, I. V. Stankevich, and N. S. Zefirov, Russ. Chem. Rev.,57, 337 (1988).

    Google Scholar 

  14. N. Trinajstic, Chemical Graph Theory (2nd edn.), Boca Raton, Fl., CRS Press (1992).

    Google Scholar 

  15. Graph Theoretical Approach to Chemical Reactivity, D. Bonchev and O. Mekenyan (eds.), Dordrecht: Kluwer Academie (1994).

    Google Scholar 

  16. S. S. Tratch and N. S. Zefirov, Principles of Symmetry and Organization in Chemistry, N. F. Stepanov (ed.), Moscow: Moscow State Univ., [in Russian] (1987), p. 84.

    Google Scholar 

  17. E. V. Gordeeva, M. S. Molchanova, and N. S. Zefirov, Tetrahedron Comp. Method,3, 389 (1990).

    Google Scholar 

  18. E. V. Babaev and N. S. Zefirov, J. Math. Chem.,11, 65 (1992).

    Google Scholar 

  19. E. V. Babaev, D. E. Lushnikov, and N. S. Zefirov, J. Am. Chem. Soc.,115, 2416 (1993).

    Google Scholar 

  20. C. A. Shelley and M. E. Munk, J. Chem. Inf. Comput. Sci.,17, 110 (1977).

    Google Scholar 

  21. I. A. Faradjev, Algorithmic Investigations in Combinatorics, Moscow: Nauka (1978), p. 11.

    Google Scholar 

  22. E. Schubert and I. Ugi, J. Am. Chem. Soc.,100, 37 (1978).

    Google Scholar 

  23. A. T. Balaban, O. Mekenyan, and D. Bonchev, J. Comput. Chem.,6, 538 (1985).

    Google Scholar 

  24. M. I. Stankevich, S. S. Tratch, and N. S. Zefirov, J. Comput. Chem.,9, 303 (1988).

    Google Scholar 

  25. D. Bonchev, Pure Appl. Chem.,55, 221 (1983).

    Google Scholar 

  26. A. T. Balaban, Mathematical Chemistry Series, D. Bonchev and D. H. Rouvray (eds.), 1, Chemical Graph Theory. Introduction and Fundamentals, Reading (U. K.): Gordon and Breach (1991), p. 177.

    Google Scholar 

  27. G. E. Vladutz, Modern Approaches to Chemical Reaction Searching, P. Willet (ed.), Aldershot: Gover (1986), p. 202.

    Google Scholar 

  28. S. Fujita, Pure Appl. Chem.,61, 605 (1989).

    Google Scholar 

  29. D. Bawden, J. Chem. Inf. Comput. Sci.,31, 212 (1991).

    Google Scholar 

  30. O. J. Sinanoglu, J. Math. Chem.,12, 319 (1993).

    Google Scholar 

  31. K. Gordeeva, D. Bonchev, D. Kamenski, and O. N. Temkin, J. Chem. Inf. Comput. Sci.,34, 244 (1994).

    Google Scholar 

  32. O. N. Temkin, A. V. Zeigarnik, and D. Bonchev, Graph Theoretical Approach to Chemical Reactivity, D. Bonchev and O. Mekenyan (eds.), Dordrecht: Kluwer Academic (1994), p. 143.

    Google Scholar 

  33. J. Dugundji and I. Ugi, Topics Curr. Chem.,39, 19 (1973).

    Google Scholar 

  34. I. Ugi and M. Wochner, Theochem.,165, 229 (1988).

    Google Scholar 

  35. J. Koca, M. Kratochvil, V. Kvasnicka, L. Matyska, and J. Pospichal, Lectures and Notes in Chemistry, 51, Berlin: Springer-Verlag (1989).

    Google Scholar 

  36. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,11, 225 (1975).

    Google Scholar 

  37. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,11, 1785 (1975).

    Google Scholar 

  38. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,12, 697 (1976).

    Google Scholar 

  39. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,12, 697 (1976).

    Google Scholar 

  40. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,17, 2465 (1981).

    Google Scholar 

  41. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,18, 1561 (1982).

    Google Scholar 

  42. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,20, 1121 (1984).

    Google Scholar 

  43. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,22, 1341 (1986).

    Google Scholar 

  44. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,23, 2488 (1987).

    Google Scholar 

  45. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,24, 1121 (1988).

    Google Scholar 

  46. N. S. Zefirov and S. S. Tratch, Zh. Org. Khim.,25, 1585 (1989).

    Google Scholar 

  47. N. S. Zefirov, Acc. Chem. Res.,20, 237 (1987).

    Google Scholar 

  48. N. S. Zefirov and S. S. Tratch, Anal. Chem. Acta.,235, 115 (1990).

    Google Scholar 

  49. S. S. Tratch, Logical and Combinatorial Methods for Design of Organic Structures, Reactions, and Configurations: D. Sc. Dissertation, Moscow State University [in Russian] (1993).

  50. F. Cyrot-Lackmann, Ph. D. Thesis, Orsay (1968).

  51. F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem. Solids,31, 1295 (1970).

    Google Scholar 

  52. F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem. Solids,32, 285 (1971).

    Google Scholar 

  53. J. K. Burdett, Graph Theory and Topology in Chemistry, R. B. King and D. H. Rouvray (eds.), Amsterdam: Elsevier (1987), p. 302.

    Google Scholar 

  54. J. K. Burdett, Structure and Bonding,65, Berlin: Springer-Verlag (1987), p. 30.

    Google Scholar 

  55. J. K. Burdett, Acc. Chem. Res.,21, 189 (1988).

    Google Scholar 

  56. J. K. Burdett, in [2], p. 302.

  57. R. Rosseau and S. Lee, Graph Theoretical Approach to Chemical Reactivity, D. Bonchev and O. Mekenyan (eds.). Dordrecht: Kluwer Academic (1994), p. 73.

    Google Scholar 

  58. H. Wiener, J. Am. Chem. Soc.,69, 17 (1947).

    Google Scholar 

  59. H. Wiener, J. Am. Chem. Soc.,69, 2636 (1947).

    Google Scholar 

  60. H. Wiener, J. Phys. Chem.,52, 425 (1948).

    Google Scholar 

  61. I. Gutman, B. Rušcic, N. Trinajstic, and C. F. Wilcox, Jr., J. Chem. Phys.,62, 3399 (1975).

    Google Scholar 

  62. D. Bonchev, O. Mekenyan, and O. E. Polansky, Graph Theory and Topology in Chemistry, R. B. King and D. H. Rouvray (eds.), Amsterdam: Elsevier (1987), p. 209.

    Google Scholar 

  63. D. Bonchev, Theochem (in press).

  64. D. Bonchev, L. B. Kier, and O. Mekenyan, Int. J. Quant. Chem.,46, 635 (1993).

    Google Scholar 

  65. D. Bonchev, W. A. Seitz, and E. Gordeeva, J. Chem. Inf. Comput. Sci.,35, 237 (1995).

    Google Scholar 

  66. D. Bonchev and L. B. Kier, J. Math. Chem.,9, 75 (1992).

    Google Scholar 

  67. D. Bonchev and E. Gordeeva, J. Chem. Inf. Comput. Sci. (in press).

  68. B. M. Gimarc, J. Am. Chem. Soc.,105, 179 (1983).

    Google Scholar 

  69. B. M. Gimarc and J. J. Ott, J. Am. Chem. Soc.,108, 4298 (1986).

    Google Scholar 

  70. B. M. Gimarc and J. J. Ott, Mathematics and Computational Concepts in Chemistry, N. Trinajstic (ed.), Chicheste U.K.: Ellis Horwood (1986), p. 74.

    Google Scholar 

  71. B. M. Gimarc and J. J. Ott, Inorg. Chem.,28, 2560 (1989).

    Google Scholar 

  72. H. C. Longuet-Higgins, C. W. Rector, and J. R. Platt, J. Chem. Phys.,18, 1174 (1950).

    Google Scholar 

  73. Y. Jiang and H. Zhang, Theor. Chim. Acta.,75, 75 (1989).

    Google Scholar 

  74. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, N.Y.: McGraw-Hill (1965).

    Google Scholar 

  75. H. Nagao, K. Nishikawa, and S. Aono, Chem. Phys. Lett.,190, 97 (1992).

    Google Scholar 

  76. I. Gutman, M. Milun, and N. Trinajstic, J. Am. Chem. Soc.,99, 1692 (1977).

    Google Scholar 

  77. J. P. Ferris and F. P. Antonucci, J. Chem. Soc. Chem. Commun., 126 (1972).

  78. J. P. Ferris, and F. P. Antonucci, J. Am. Chem. Soc.,96, 2010, 2014 (1974).

    Google Scholar 

  79. C. L. Kwan, M. Carmack, and J. K. Kochi, J. Phys. Chem.,80, 1786 (1976).

    Google Scholar 

  80. B. A. Hess, Jr., L. J. Shaad, and C. W. Holyoke, Jr., Tetrahedron,28, 3657 (1972).

    Google Scholar 

  81. B. A. Hess, Jr., L. J. Shaad, and C. W. Holyoke, Jr., Tetrahedron,31, 295 (1975).

    Google Scholar 

  82. B. Ya. Simkin, V. I. Minkin, and M. N. Glukhovtserv, Adv. Heterocycl. Chem.,56, 303 (1993).

    Google Scholar 

  83. D. Bonchev and W. A. Seits, work in progress.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to N. S. Zefirov for his important contributions to mathematical chemistry, as well as for his friendly help to those who need it.

Texas A&M university, Galveston, Texas. Published in Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1011–1022,August, 1995. Original article submitted May 19, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonchevt, D., Seitz, W.A. On topological charge stabilization in heterocyclic compounds. Chem Heterocycl Compd 31, 879–889 (1995). https://doi.org/10.1007/BF01170315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170315

Keywords

Navigation