Skip to main content
Log in

A study of the aromaticity of heteroannelated cyclooctatetraene derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The aromaticity of the rings of thiophene, pyrrole, furan, and benzene annelated cyclooctatetraene (COT) derivatives and of their double charged ions was studied using the graph-theoretical theory of aromaticity. On the basis of topological resonance energy, it was found that the global aromaticity is dependent upon on the arrangement of heteroatoms in the given molecule. Relative stability of these molecules when in different charged states can been explained in terms of the topological charge stabilization rule. We expect that fusing the COT ring with an increasing number of aromatic rings will lead to an increase in the aromaticity of the molecule. According to the bond resonance energy (BRE) and circuit resonance energy (CRE) indices, local antiaromaticity of the COT ring is weakened as the number of fused rings increases, and these changes play a significant role in the global aromaticity of the molecule. For some compounds, our BRE and CRE indices do not predict the same order of magnitude of the local aromatic character of certain rings that the nucleus independent chemical shift (NICS(0) and (NICS(1)) methods predict. Finally, for the available compounds, correlations between the diatropic and paratropic chemical shifts of the protons and our ring current results were analyzed and good agreement was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baryshnikov GV, Karaush NN, Valiev RR, Minaev BF (2015) Aromaticity of the completely annelated tetraphenylenes: NICS and GIMIC characterization. J Mol Model 21:136–145

    Article  CAS  PubMed  Google Scholar 

  2. Feng CN, Kuo MY, Wu YT (2013) Synthesis, structural analysis, and properties of [8] circulenes. Angew Chem Int Ed 52:7791–7794

    Article  CAS  Google Scholar 

  3. Baryshnikov GV, Karaush NN, Minaev BF (2014) The electronic structure of heteroannelated cyclooctatetraenes and their UV-VIS absorption spectra. Chem Heterocycl Compd 50:349–363

    Article  CAS  Google Scholar 

  4. Baryshnikov GV, Valiev RR, Karaush NN, Sundholme D, Minaev BF (2016) Aromaticity of the doubly charged [8]circulenes. Phys Chem Chem Phys 18:8980–8992

    Article  CAS  PubMed  Google Scholar 

  5. Baryshnikov GV, Valiev RR, Karausha NN, Minaev BF (2014) Aromaticity of the planar hetero[8] circulenes and their doubly charged ions: NICS and GIMIC characterization. Phys Chem Chem Phys 16:15367–15374

    Article  CAS  PubMed  Google Scholar 

  6. Baryshnikov GV, Minaev BF, Minaeva VA (2015) Electronic structure, aromaticity and spectra of hetero[8]circulenes. Russ Chem Rev 84:455–484

    Article  CAS  Google Scholar 

  7. Minaeva VA, Baryshnikov GV, Minaev BF, Karaush NN, Xiong XD, Li MD, Phillips DL, Wong HNC (2015) Structure and spectroscopic characterization of tetrathia- and tetraselena[8] circulenes as a new class of polyaromatic heterocycles. Spectrochim. Acta A Mol Biomol Spectrosc 151:247–261

  8. Baryshnikov GV, Minaev BF, Pittelkow M, Nielsen CB, Salcedo R (2013) Nucleus-independent chemical shift criterion for aromaticity in π-extended tetraoxa[8]circulenes. J Mol Model 19:847–850

    Article  CAS  PubMed  Google Scholar 

  9. Karaush NN, Baryshnikov GV, Minaeva VA, Ågren H, Minaev BF (2017) Recent progress in quantum chemistry of hetero[8] circulenes. Mol Phys 115:2218–2230

    Article  CAS  Google Scholar 

  10. Baryshnikov GV, Valiev RR, Minaev BF, Ågren H (2017) A computational study of aromaticity and photophysical properties of unsymmetrical azatrioxa[8] circulenes. New J Chem 41:2717–2723

    Article  CAS  Google Scholar 

  11. Baryshnikov GV, Valiev RR, Karaush NN, Minaeva VA, Sinelnikov AN, Pedersen SK, Pittelkow M, Minaev BF, Ågren H (2016) Benzoannelated aza-, oxa- and azaoxa[8]circulenes as promising blue organic emitters. Phys Chem Chem Phys 18:28040–28051

    Article  CAS  PubMed  Google Scholar 

  12. Aita K, Ohmae T, Takase M, Nomura K, Kimura H, Nishinaga T (2013) Dithieno[3,4-b:3′,4′-d]thiophene-annelated antiaromatic planar cyclooctatetraene with olefinic protons. Org Lett 15:3522–3525

    Article  CAS  PubMed  Google Scholar 

  13. Aihara J (1976) A new definition of Dewar-type resonance energies. J Am Chem Soc 98:2750–2758

    Article  CAS  Google Scholar 

  14. Gutman I, Milun M, Trinajstić N (1977) Graph theory and molecular orbitals. 19. Nonparametric resonance energies of arbitrary conjugated systems. J Am Chem Soc 99:1692–1704

    Article  CAS  Google Scholar 

  15. Sekine R, Nakagami Y, Aihara J (2011) Aromatic character of polycyclic π systems formed by fusion of two or more rings of the same size. J Phys Chem A 115:6724–6731

    Article  CAS  PubMed  Google Scholar 

  16. Aihara J (1995) Bond resonance energy and verification of the isolated pentagon rule. J Am Chem Soc 117:4130–4136

    Article  CAS  Google Scholar 

  17. Aihara J (1996) Bond resonance energies of polycyclic benzenoid and non-benzenoid hyrocarbons. J Chem Soc Perkin Trans 2:2185–2195

    Article  Google Scholar 

  18. Aihara J, Ishida T, Kanno H (2007) Bond resonance energy as an indicator of local aromaticity. Bull Chem Soc Jpn 80:1518–1521

    Article  CAS  Google Scholar 

  19. Aihara J (2006) Circuit resonance energy: a key quantity that links energetic and magnetic criteria of aromaticity. J Am Chem Soc 128:2873–2879

    Article  CAS  PubMed  Google Scholar 

  20. Schleyer PR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  PubMed  Google Scholar 

  21. Schleyer PR, Manoharan M, Wang Z, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJR (2001) Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org Lett 3:2465–2468

    Article  CAS  PubMed  Google Scholar 

  22. Arkin R, Kerim A (2012) A study on the aromaticity and magnetotropicity of 10π-electron azapentalene derivatives. Chem Phys Lett 546:144–149

    Article  CAS  Google Scholar 

  23. Kerim A (2014) A study on the aromaticity and magnetic properties of triazolephorphyrazines. New J Chem 383:3783–3790

    Article  Google Scholar 

  24. Jonathan N, Gordon S, Dailey BP (1962) Chemical shifts and ring currents in condensed ring hydrocarbons. J Chem Phys 36:2353–2354

    Article  Google Scholar 

  25. Haigh CW, Mallion RB (1982) “Ring-current” effects on 1H-NMR chemical shifts in linear acenes. J Chem Phys 76:4063–4066

    Article  CAS  Google Scholar 

  26. Dickens TK, Mallion RB (2011) Topological ring-currents and bond-currents in some nonalternant isomers of coronene. J Phys Chem A 115:13877–13884

    Article  CAS  PubMed  Google Scholar 

  27. Van-Catledge FA (1980) A Pariser-Parr-Pople-based set of Hückel molecular orbital parameters. J Org Chem 45:4801–4802

  28. Wilcox Jr CF, Farley EN (1984) Dicyclooctabiphenylene. Synthesis and properties. J. Am Chem Soc 106:7195–7200

  29. Rajca A, Miyasaka M, Xiao SZ, Boratyński PJ, Pink M, Rajca S (2009) Intramolecular cyclization of thiophene-based [7] helicenes to quasi-[8]circulenes. J Org Chem 74:9105–9111

  30. Ilić P, Trinajstić N (1980) Topological resonance energies of conjugated ions, radicals, and ion radicals. J Org Chem 45:1738–1748

  31. Najmidin K, Kerim A, Abdirishit P, Kalam H, Tawar T (2013) A comparative study of the aromaticity of pyrrole, furan, thiophene, and their aza-derivatives. J Mol Model 19:3529–3535

    Article  CAS  PubMed  Google Scholar 

  32. Gimarc BM (1983) Topological charge stabilization. J Am Chem Soc 105:1979–1984

    Article  CAS  Google Scholar 

  33. Gimarc BM, Ott JJ (1986) Topologically determined charge distributions and the chemistry of some cage-type structures related to adamantine. J Am Chem Soc 108:4298–4303

    Article  CAS  Google Scholar 

  34. Wilcox Jr CF, Farley EN (1985) Cyclooctannelated biphenylenes. Diagnosis of an anomalous bond length by analysis of ring current geometric factors. J Org Chem 50:351–356

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (No. 21662033) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ablikim Kerim.

Electronic supplementary material

ESM 1

(DOC 474 kb)

ESM 2

(DOC 1654 kb)

ESM 3

(DOC 1295 kb)

ESM 4

(DOC 89 kb)

ESM 5

(DOC 238 kb)

ESM 6

(DOC 73 kb)

ESM 7

(DOC 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdukadir, A., Mattursun, A., Kerim, A. et al. A study of the aromaticity of heteroannelated cyclooctatetraene derivatives. J Mol Model 24, 123 (2018). https://doi.org/10.1007/s00894-018-3659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3659-y

Keywords

Navigation