Skip to main content
Log in

Physical meaning of the QTAIM topological parameters in hydrogen bonding

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work examined the local topological parameters of charge density at the hydrogen bond (H-bond) critical points of a set of substituted formamide cyclic dimers and enolic tautomers. The analysis was performed not only on the total electron density of the hydrogen bonded complexes but also on the intermediate electron density differences derived from the Morokuma energy decomposition scheme. Through the connection between these intermediate electron density differences and the corresponding differences in topological parameters, the meaning of topological parameters variation due to hydrogen bonding (H-bonding) becomes evident. Thus, for example, we show in a plausible way that the potential energy density differences at the H-bond critical point properly describe the electrostatics of H-bonding, and local kinetic energy density differences account for the localization/delocalization degree of the electrons at that point. The results also support the idea that the total electronic energy density differences at the H-bond critical point describe the strength of the interaction rather than its covalent character as is commonly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  2. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111(4):2597–2625. doi:10.1021/cr800346f

    Article  CAS  Google Scholar 

  3. Morokuma K (1977) Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc Chem Res 10(8):294–300. doi:10.1021/ar50116a004

    Article  CAS  Google Scholar 

  4. Morokuma K, Kitaura K (1981) Energy decomposition analysis of molecular interactions. In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electronic potentials. Plenum, New York, pp 215–242

    Chapter  Google Scholar 

  5. Clark T (2013) σ-holes. WIRES Comput Mol Sci 3(1):13–20. doi:10.1002/wcms.1113

    Article  CAS  Google Scholar 

  6. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput Theor Chem 998:2–8. doi:10.1016/j.comptc.2012.06.007

    Article  CAS  Google Scholar 

  7. Angelina EL, Duarte DJR, Peruchena NM (2013) Is the decrease of the total electron energy density a covalence indicator in hydrogen and halogen bonds? J Mol Model 19(5):2097–2106. doi:10.1007/s00894-012-1674-y

    Article  CAS  Google Scholar 

  8. Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  9. Angelina EL, Peruchena NM (2011) Strength and nature of hydrogen bonding interactions in mono- and di-hydrated formamide complexes. J Phys Chem A 115(18):4701–4710. doi:10.1021/jp1105168

    Article  CAS  Google Scholar 

  10. Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317(1–2):97–102. doi:10.1016/S0009-2614(99)01306-8

    Article  CAS  Google Scholar 

  11. Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122(51):12835–12841. doi:10.1021/ja0025705

    Article  CAS  Google Scholar 

  12. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H···F–Y systems. J Chem Phys 117(12):5529–5542. doi:10.1063/1.1501133

    Article  CAS  Google Scholar 

  13. Pakiari AH, Eskandari K (2006) The chemical nature of very strong hydrogen bonds in some categories of compounds. J Mol Struct THEOCHEM 759(1–3):51–60. doi:10.1016/j.theochem.2005.10.040

    Article  CAS  Google Scholar 

  14. Grabowski SJ, Sokalski WA, Dyguda E, Leszczyński J (2006) Quantitative classification of covalent and noncovalent H-bonds. J Phys Chem B 110(13):6444–6446. doi:10.1021/jp0600817

    Article  CAS  Google Scholar 

  15. Esrafili M (2012) Characteristics and nature of the intermolecular interactions in boron-bonded complexes with carbene as electron donor: an ab initio, SAPT and QTAIM study. J Mol Model 18(5):2003–2011. doi:10.1007/s00894-011-1221-2

    Article  CAS  Google Scholar 

  16. Grabowski SJ, Sokalski WA, Leszczynski J (2006) The possible covalent nature of N-H⋯O hydrogen bonds in formamide dimer and related systems: an ab initio study. J Phys Chem A 110(14):4772–4779. doi:10.1021/jp055613i

    Article  CAS  Google Scholar 

  17. Grabowski S (2009) Covalent character of hydrogen bonds enhanced by π-electron delocalization. Croat Chem Acta 82(1):185–192

    CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko GA, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D01; Gaussian, Inc, Wallingford

  19. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  20. Keith TA (2012) AIMAll (Version 12.11.09). TK Gristmill Software, Overland Park, KS (http://aim.tkgristmill.com/)

  21. Feynman RP, Leighton RB, Sands M (1964) The Feynman lectures on physics. Addison-Wesley, Reading

    Google Scholar 

  22. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102(37):7314–7323. doi:10.1021/jp981794v

    Article  CAS  Google Scholar 

  23. Bader RFW, Henneker WH, Cade PE (1967) Molecular charge distributions and chemical binding. J Chem Phys 46(9):3341–3363

    Article  CAS  Google Scholar 

  24. Bader RFW, Preston HJT (1969) The kinetic energy of molecular charge distributions and molecular stability. Int J Quantum Chem 3(3):327–347. doi:10.1002/qua.560030308

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the Secretaría de Ciencia y Tecnología de la Universidad Nacional del Nordeste (SECYT UNNE) and Consejo Nacional de InvestigacionesCientíficas y Técnicas (CONICET) for financial support. The authors also acknowledge the use of CPUs from the High Performance Computing Center of the Northeastern of Argentina (CECONEA). This work was supported by the Grants PIP 095 CONICET and 2010F023 SECYT-UNNE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darío J. R. Duarte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, D.J.R., Angelina, E.L. & Peruchena, N.M. Physical meaning of the QTAIM topological parameters in hydrogen bonding. J Mol Model 20, 2510 (2014). https://doi.org/10.1007/s00894-014-2510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2510-3

Keywords

Navigation