Skip to main content
Log in

Structural properties of precipitates formed by hydrolysis of Fe3+ ions in Fe2(SO4)3 solutions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural properties of the solid phase, formed by the hydrolysis of Fe3+ ions in Fe2(SO4)3 solutions at 90 or 120 °C, were investigated using X-ray diffraction,57Fe Mössbauer spectroscopy, Fourier transform-infrared spectroscopy (FT—IR) and transmission electron microscopy. The concentration regions of Fe2(SO4)3 were determined for the precipitation of goethite, α-FeOOH, or hydronium jarosite, H3OFe3(OH)6(SO4)2′ as a single phase. Superparamagnetic behaviour of α-FeOOH particles was observed. Hydrolysis of Fe3+ ions in 0.1 M Fe2(SO4)3 solutions at 120 °C produced H3OFe3(OH)6(SO4)2 and basic sulphate, Fe4(OH)10SO4. The interpretation of57Fe Mössbauer and FT—IR spectra is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Leidheiser, Jr andS. Musić,Corros. Sci. 22 (1982) 1089.

    Google Scholar 

  2. S. Musić, I. Czakó-Nagy, S. Popović, A. Vértes andM. Tonković,Croat. Chem. Acta 59 (1986) 833.

    Google Scholar 

  3. S. Musić, S. Popović andM. Gotić,ibid. 60 (1987) 661.

    Google Scholar 

  4. Idem, J. Mater. Sci. 25 (1990) 3186.

    Google Scholar 

  5. J. Dousma, D. Den Ottelander andP. L. De Bruyn,J. Inorg. Nucl. Chem. 41 (1979) 1565.

    Google Scholar 

  6. E. Matijević, R. S. Sapieszko andJ. B. Melville,J. Coll. Interface Sci. 50 (1975) 567.

    Google Scholar 

  7. R. S. Sapieszko, R. C. Patel andE. Matijević,J. Phys. Chem. 81 (1977) 1061.

    Google Scholar 

  8. S. Musić, A. Vértes, G. W. Simmons, I. Czakó-Nagy andH. Leidheiser Jr,J. Coll. Interface Sci. 85 (1982) 256.

    Google Scholar 

  9. N. Lazaroff, W. Sigal andA. Wassermann,Appl. Environ. Microbiol. 43 (1982) 924.

    Google Scholar 

  10. J. M. Bigham, U. Schwertmann, L. Carlson andE. Murad,Geochim. Cosmochim. Acta 54 (1990) 2743.

    Google Scholar 

  11. J. E. Dutrizac andS. Kaiman,Hydrometall. 1 (1975) 51.

    Google Scholar 

  12. J. E. Dutrizac andT. T. Chen,Canad. Mineral. 19 (1981) 559.

    Google Scholar 

  13. J. E. Dutrizac, in “Proceedings of the Australian Institute of Mining and Metallurgy, No. 278 (Australian Institute of Mining and Metallurgy, Parkville, Victoria 3052, Australia, 1981) pp. 23–32.

    Google Scholar 

  14. J. E. Dutrizac,Metall. Trans. B 14 (1983) 531.

    Google Scholar 

  15. J. E. Dutrizac, in “Hydrometallurgical Process Fundamentals” edited by R. G. Bautista (Plenum, 1984) pp. 125–69.

  16. J. A. Ripmeester, C. I. Ratcliffe, J. E. Dutrizac andJ. L. Jambor,Canad. Mineral. 24 (1986) 435.

    Google Scholar 

  17. J. E. Dutrizac andJ. L. Jambor, in “Applied Mineralogy”, edited by W. C. Park, D. M. Hausen and R. D. Hagni (Metallurgical Society American Institute of Mining, Metallurgy and Petroleum Engineering, Warrendale, PA, 1985) pp. 507–30.

    Google Scholar 

  18. Idem, Hydrometall. 17 (1987) 251.

    Google Scholar 

  19. W. Kunda andH. Veltman,Metall. Trans B. 10 (1979) 439.

    Google Scholar 

  20. J. E. Dutrizac, in “Productivity and Technology in the Metallurgical Industries” edited by M. Koch and J. C. Taylor (Minerals, Metals and Materials Society, 1989) pp. 587–612.

  21. S. Musić, A. Vértes, G. W. Simmons, I. Czakó-Nagy andH. Leidheiser Jr,Radiochem. Radioanal. Lett. 49 (1981) 315.

    Google Scholar 

  22. International Centre for Diffraction Data, Joint Committee on Powder Diffraction Standards, Powder Diffraction File, 1601 Park Lane, Swarthmore, PA 19081, USA.

  23. A. Leclerc,Phys. Chem. Mineral. 6 (1980) 327.

    Google Scholar 

  24. J. R. Gancedo andM. L. Martinez, in “Magnetic Resonance in Colloid and Interface Science” edited by J. P. Fraissard and H. A. Resing (Reidel, 1980) p. 371.

  25. C. Morterra, A. Chiorino andE. Borello,Mater. Chem. Phys. 10 (1984) 119.

    Google Scholar 

  26. L. Verdonck, S. Hoste, F. F. Roelandt andG. P. Van Der Kelen,J. Molec. Struct. 79 (1982) 273.

    Google Scholar 

  27. P. Cambier,Clay Minerals 21 (1986) 191.

    Google Scholar 

  28. S. Musić, J. Šipalo-Žuljević andR. H. H. Wolf,Radiochim. Radioanal. Lett. 45 (1980) 235.

    Google Scholar 

  29. S. Musić, J. Šipalo-Žuljević,Radiochim. Acta 27 (1980) 61.

    Google Scholar 

  30. S. Musić, M. Ristić andM. Tonković,Z. Waser-Abwaser Forsch. 19 (1986) 186.

    Google Scholar 

  31. C. J. Serna, C. Parada Cortina andJ. V. Garcia-Ramos,Spectrochim. Acta 42A (1986) 729.

    Google Scholar 

  32. I. L. Botto, E. J. Baran andA. C. Garcia,An. Quim. 83B (1987) 145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musić, S., Orehovec, Z., Popović, S. et al. Structural properties of precipitates formed by hydrolysis of Fe3+ ions in Fe2(SO4)3 solutions. J Mater Sci 29, 1991–1998 (1994). https://doi.org/10.1007/BF01154672

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01154672

Keywords

Navigation