Skip to main content
Log in

Hydrolysis of Fe(III) in the presence of mixed anions and promoters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Forced hydrolyses in the precipitation systems (a) Fe(NO3)3/Fe2(SO4)3 and FeCl3/Fe2(SO4)3 and (b) FeCl3/N-guanylurea sulphate were investigated using 57Fe Mössbauer and FT-IR spectroscopies and scanning electron microscopy (FE SEM). Forced hydrolyses of Fe(NO3)3/Fe2(SO4)3 solutions at 90 °C yielded superparamagnetic goethite nanorods, whereas in the case of FeCl3/Fe2(SO4)3 solutions the clusters of akaganéite nanoneedles were formed. With a prolonged heating time at 90 °C the conversion of these akaganéite nanoneedles into goethite nanorods was observed. Forced hydrolysis in the system FeCl3/N-guanylurea sulphate at 160 °C generated only hematite and goethite phases and their fractions depended on the concentration of FeCl3 and the amount of N-guanylurea sulphate in the solution. Different shapes of iron(III) oxyhydroxides and hematite in dependence on the experimental conditions were monitored with FE SEM. Specifically adsorbed sulphates on these particles, as shown by FT-IR spectroscopy, served as directing agents in the particle/crystal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Musić S, Ristić M, Krehula S (2013) 57Fe Mössbauer spectroscopy in the investigation of the precipitation of iron oxides, Chapter in the book. In: Sharma VK, Kligenhofer G, Nishida T (eds) Mössbauer spectroscopy: applications in chemistry, biology and nanotechnology. Wiley, Hoboken, pp 470–504

    Chapter  Google Scholar 

  2. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions and uses, 2nd edn. Wiley-VCH GmbH & Co KgaA, Weinheim

    Book  Google Scholar 

  3. Musić S, Vértes A, Simmons GW, Czakó-Nagy I, Leidheiser H (1982) Mössbauer spectroscopic study of the formation of iron(III) oxyhydroxides and oxides by hydrolysis of Fe(III) salt solutions. J Colloid Interface Sci 85:256–266

    Article  Google Scholar 

  4. Musić S, Popović S, Orehovec Z, Czakó-Nagy I (1993) Structural properties of precipitates formed by hydrolysis of Fe3+ ions in NH4Fe(SO4)2 solutions. J Colloid Interface Sci 160:479–482

    Article  Google Scholar 

  5. Musić S, Orehovec Z, Popović S, Czakó-Nagy I (1994) Structural properties of precipitates formed by hydrolysis of Fe3+ ions in Fe2(SO4)3 solutions. J Mater Sci 29:1991–1998

    Article  Google Scholar 

  6. Musić S, Krehula S, Popović S, Skoko Ž (2003) Some factors influencing forced hydrolysis of FeCl3 solutions. Mater Lett 57:1096–1102

    Article  Google Scholar 

  7. Žic M, Ristić M, Musić S (2009) Precipitation of α-Fe2O3 from dense β-FeOOH suspensions with added ammonium amidosulphonate. J Mol Struct 924–926:235–242

    Article  Google Scholar 

  8. Ishikawa T, Isa R, Kandori K, Nakayama T, Tsubota T (2004) Influence of metal chlorides and sulfates on the formation of β-FeOOH particles by aerial oxidation of FeCl2 solutions. J Electrochem Soc 151:B586–B594

    Article  CAS  Google Scholar 

  9. Tabakova T, Andreeva D, Andreev A, Vladov CH, Mitov I (1992) Mechanism of the oxidative hydrolysis of iron(II) sulphate. J Mater Sci Mater Electron 3:201–205

    Article  CAS  Google Scholar 

  10. Gotić M, Musić S (2007) Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J Mol Struct 834–836:445–453

    Article  Google Scholar 

  11. Peretyazhko TS, Fox A, Sutter B, Niles PB, Adams M, Morris RV, Ming DW (2016) Synthesis of akaganéite in the presence of sulfate: implications for akaganéite formation in Yellowknife Bay, Gale Crater, Mars. Geochim Cosmochim Acta 188:284–296

    Article  CAS  Google Scholar 

  12. Murad E, Johnston JH (1987) Iron oxides and oxyhydroxides. In: Long GJ (ed) Mössbauer spectroscopy applied to inorganic chemistry. Plenum Publishing Corporation, New York, pp 507–582

    Google Scholar 

  13. Murad E (1982) The characterization of goethite by Mössbauer spectroscopy. Am Mineralogist 67:1007–1011

    CAS  Google Scholar 

  14. Betancur JD, Barrero CA, Greneche JM, Goya GF (2004) The effect of water content on the magnetic and structural properties of goethite. J Alloys Comp 369:247–251

    Article  CAS  Google Scholar 

  15. Rézel D, Genin JMR (1990) The substitution of chloride ions for OH ions in the akaganéite beta ferric oxyhydroxide studied by Mössbauer effect. Hyp Interact 57:2067–2076

    Article  Google Scholar 

  16. Barrero CA, Garcia KE, Morales AL, Kodjikian S, Greneche JM (2000) New analysis of the Mössbauer spectra of akaganéite. J Phys Matter 18:6827–6840

    Article  Google Scholar 

  17. Krehula S, Musić S (2008) Influence of aging in an alkaline medium on the microstructural properties of α-FeOOH. J Cryst Growth 310:513–520

    Article  CAS  Google Scholar 

  18. Peak D, Ford RG, Sparks DL (1999) An in situ ATR-FTIR investigation of sulfate bonding mechanism on goethite. J Colloid Interface Sci 218:289–299

    Article  CAS  Google Scholar 

  19. Šarić A, Musić S, Nomura K, Popović S (1998) Microstructural properties of Fe-oxide powders obtained by precipitation from FeCl3 solutions. Mater Sci Eng B56:43–52

    Article  Google Scholar 

  20. Wang Y, Muramatsu A, Sugmoto T (1998) FT-IR analysis of well-defined α-Fe2O3 Particles. Colloids Surf Physicochem Eng Asp 134:281–297

    Article  CAS  Google Scholar 

  21. Kanie K, Muramatsu A, Suzuki S, Waseda Y (2004) Influence of sulfate ions on conversion of Fe(OH)3 gel to β-FeOOH and α-Fe2O3. Mater Trans 45:968–971

    Article  CAS  Google Scholar 

  22. Parida KM, Das J (1996) Studies on ferric oxide oxyhydroxides Part 1: effect of sulfate ions on the formation and physico-chemical properties of ferric oxide hydroxides prepared by a homogeneous precipitation method. J Mater Sci 31:2199–2205

    Article  CAS  Google Scholar 

  23. Liu J, Yang H, Xue X (2019) Preparation of different shaped α-Fe2O3 nanoparticles with large particles of iron oxide red. Cryst Eng Comm 21:1097–1101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Croatian Science Foundation (Project No. IP-2016-06-8254), Croatian-Hungarian S and T project (2017-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetozar Musić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ristić, M., Kuzmann, E., Homonnay, Z. et al. Hydrolysis of Fe(III) in the presence of mixed anions and promoters. J Radioanal Nucl Chem 324, 1293–1302 (2020). https://doi.org/10.1007/s10967-020-07158-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07158-w

Keywords

Navigation