Skip to main content
Log in

Role of oxygen supply in high-temperature growth of compact oxide scale

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-temperature oxidation of metals at low oxygen impinging fluxes and low values of oxygen partial pressure were considered on the basis of the fundamental aspects of oxidation kinetics. To do this, the oxidation kinetics of copper to the monovalent oxide was studied under appropriate experimental conditions using apparatus consisting of two solid-state electrochemical cells, both with yttria stabilized zirconia as the solid electrolyte, coupled together. The cells operated as oxygen sensor and oxygen pump, respectively, in such a way that oxygen gas was generated and monitored very close to the surface of the oxidizing sample. The results obtained on copper foil at 1113 K over the oxygen pressure range 1 × 10−14 (highly purified argon) to 1500 Pa show a linear growth of the oxide for exposures up to 2000sec. This was tentatively explained by assuming the oxygen supply to the sample surface to be the rate limiting step, instead of the solid state diffusion into the growing oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Fromhold Jr, in “Theory of Metal Oxidation”, Vol. I, Defects in Crystalline Solids Series, edited by S. Amelincks, R. Gevers and J. Nihoul (North-Holland, Amsterdam 1976) p. 69.

    Google Scholar 

  2. PER Kofstad, “High Temperature Oxidation of Metals” (Wiley, New York, 1966).

    Google Scholar 

  3. Idem, “High Temperature Corrosion” (Elsevier, London, 1988).

    Google Scholar 

  4. J. E. Boggio,J. Chem. Phys. 53 (1970) 3544.

    Google Scholar 

  5. N. Cabrera andN. F. Mott,Rep. Progr. Phys. 12 (1949) 163.

    Google Scholar 

  6. A. T. Fromhold Jr andE. L. Cook,Phys. Rev. Lett B 17 (1966) 1212.

    Google Scholar 

  7. C. Wagner,Z. Phys. Chem. B21 (1933) 25.

    Google Scholar 

  8. E. T. Turkdogan, W. M. McKewan andL. Zwell,J. Chem. Phys. 60 (1965) 327.

    Google Scholar 

  9. D. Gozzi Mater. Chem. Phys. 8 (1983) 503.

    Google Scholar 

  10. Idem, Solid State Ionics 14 (1984) 239.

    Google Scholar 

  11. D. Gozzi andG. De Maria,High Temp. Sci. 22 (1986) 27.

    Google Scholar 

  12. M. Tomellini andD. Gozzi,Oxid. Metals 26 (1986) 305.

    Google Scholar 

  13. M. Tomellini, D. Gozzi, A. Bianconi andI. Davoli,J. C. S. Faraday Trans. I,83 (1987) 289.

    Google Scholar 

  14. D. Gozzi, M. Tomellini, P. L. Cignini andL. Petrucci,J. Electrochem. Soc. 134 (1987) 728.

    Google Scholar 

  15. D. Gozzi, P. L. Cignini, G. Carnevale, L. Petrucci andM. Tomellini,High Temp. High Press. 20 (1988) 385.

    Google Scholar 

  16. J. P. Baur, D. W. Bridges andW. M. Fassel Jr,J. Electrochem. Soc. 103 (1956) 273.

    Google Scholar 

  17. W. J. Tomlinson andJ. Yates,J. Phys. Chem. Solids 38 (1977) 1205.

    Google Scholar 

  18. JANAF Thermochemical Tables (NSRDS-NBS 37, 1971) and Supplement 1974,J. Phys. Chem. Ref. Data (1974) 463.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Centro di Termodinamica Chimica alle Alte Temperature — CNR, c/o Dipartimento di Chimica, Universita “La Sapienza”, P. le Aldo Moro 5, 00185 Roma, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gozzi, D., Cignini, P.L., Petrucci, L. et al. Role of oxygen supply in high-temperature growth of compact oxide scale. J Mater Sci 25, 4562–4566 (1990). https://doi.org/10.1007/BF01129906

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129906

Keywords

Navigation