Skip to main content
Log in

Fully relativistic pseudopotentials for alkaline atoms: Dirac-Hartree-Fock and configuration interaction calculations of alkaline monohydrides

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Fully relativistic four-component energy-adjusted pseudopotentials and corresponding valence basis sets have been derived for the alkaline atoms Li through Cs, treating them as one-valence electron systems. Core-valence correlation effects are accounted for by a core-polarization potential, deviations of the core-nucleus repulsion from a point charge model by a suitable correction. The results of Dirac-Hartree-Fock and configuration interaction calculations are presented for atomic properties not used in the pseudopotential adjustment, i.e. electron affinities and dipole polarizabilities, as well as for the spectroscopic constants of the ground states of the alkaline monohydrides. The analytic form of the cut-off function for the electric field in the core-polarization term and its effects on atomic and molecular properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malli G, Oreg J (1975) J Chem Phys 63:830

    Google Scholar 

  2. Visser O, Visscher L, Aerts PJC, Nieuwpoort W (1992) Theor Chim Acta 81:405; (b) J Chem Phys 96:2910

    Google Scholar 

  3. Dyall KG (1992) J Chem Phys 96:1210;

    Google Scholar 

  4. Dyall KG (1993) J Chem Phys 98:2191;

    Google Scholar 

  5. Dyall KG, Faegri K, Taylor PR, Partridge H (1991) J Chem Phys 95:2583

    Google Scholar 

  6. Mohanty AK, Clementi E (1991) Int J Quantum Chem 39:487;

    Google Scholar 

  7. Mohanty AK (1992) Int J Quantum Chem 42:627;

    Google Scholar 

  8. Pisani L, Clementi E (1984) J Chem Phys 101:3079

    Google Scholar 

  9. Matsuoka O (1992) J Chem Phys 97:2271

    Google Scholar 

  10. Baeck KK, Lee YS (1994) J Chem Phys 100:2888

    Google Scholar 

  11. Dyall KG (1994) Chem Phys Lett 224:186

    Google Scholar 

  12. Visscher L, Saue T, Nieuwpoort WC, Faegri K, Gropen O (1993) J Chem Phys 99:6704

    Google Scholar 

  13. Visscher L (1995) Results presented at the REHE ESF conference in Il Ciocco, Pisa

  14. Kutzelnigg W (1989) Z Phys D 11:15; (b) (1990) Z Phys D 15:27;

    Google Scholar 

  15. Kutzelnigg W, Ottschofki E, Franke R (1995) J Chem Phys 102:1740; (d) Ottschofki E, Kutzelnigg W, J Chem Phys 102:1752

    Google Scholar 

  16. Rutkowski A (1986) J Phys B 19:149, 3431, 3443

    Google Scholar 

  17. Douglas M, Kroll NM (1974) Ann Phys 82:89

    Google Scholar 

  18. Heß BA (1986) Phys Rev A 33:3742;

    PubMed  Google Scholar 

  19. Jansen G, Hess BA (1989) Phys Rev A 39:6016

    PubMed  Google Scholar 

  20. Samzow R, Heß BA (1991) Chem Phys Lett 184:491;

    Google Scholar 

  21. Samzow R, Hess BA, Jansen G (1991) J Chem Phys 96:1227

    Google Scholar 

  22. van Lenthe E, Baerends EJ, Snijders JG (19933) J Chem Phys 99:4597;

  23. van Lenthe E, van Leeuwen R, Baerends EJ, Snijders JG (1994) in: Broer R, Aerts PJC, Bagus PS (eds.), New Challenges in Computational Quantum Chemistry, Department of Chemical Sciences and Material Science Centre, University of Groningen, Netherlands

    Google Scholar 

  24. Chang C, Pelissier M, Durand P (1986) Phys Scripta 34:394

    Google Scholar 

  25. Heully JL, Lindgren I, Lindroth E, Lundqvist S, Mårtensson-Pendrill AM (1986) J Phys B 19:2799

    Google Scholar 

  26. Hellmann H (1935) J Chem Phys 3:61

    Google Scholar 

  27. Gombás P (1935) Z Phys 94:473

    Google Scholar 

  28. Durand P, Barthelat JC (1974) Chem Phys Lett 27:191;

    Google Scholar 

  29. Durand P, Barthelat JC (1975) Theor Chim Acta 38:283;

    Google Scholar 

  30. Barthelat JC, Durand P (1978) Gazz Chim Ital 108:225

    Google Scholar 

  31. Lee YS, Ermler WC, Pitzer KS (1977) J Chem Phys 67:5861;

    Google Scholar 

  32. Christiansen PA, Lee YS, Pitzer KS (1979) J Chem Phys 71:4445;

    Google Scholar 

  33. Christiansen PA, Ermler WC, Pitzer KS (1985) Ann Rev Phys Chem 36:407

    Google Scholar 

  34. Bonifacic V, Huzinaga S (1974) J Chem Phys 60:2779;

    Google Scholar 

  35. Klobukowski M (1983) J Comp Chem 4:350;

    Google Scholar 

  36. Huzinaga S, Seijo L, Barandiarán Z, Klobukowski M (1987) J Chem Phys 86:2132;

    Google Scholar 

  37. Barandiarán Z, Seijo L, Huzinaga S (1990) J Chem Phys 93:5843;

    Google Scholar 

  38. Barandiarán Z, Seijo L (1994) J Chem Phys 101:4049;

    Google Scholar 

  39. Seijo L (1995) J Chem Phys 102:8078

    Google Scholar 

  40. Ishikawa Y, Malli G (1981) J Chem Phys 75:5423

    Google Scholar 

  41. Shukla A, Banerjee A (1994) J Chem Phys 100:3695

    Google Scholar 

  42. Müller W, Flesch J, Meyer W (1984) J Chem Phys 80:3297;

    Google Scholar 

  43. Müller W, Meyer W (1984) J Chem Phys 80:3311

    Google Scholar 

  44. Fuentealba P, Preuss H, Stoll H, v Szentpály L (1982) Chem Phys Lett 89:418;

    Google Scholar 

  45. v Szentpály L. Fuentealba P, Preuss H, Stoll H (1982) Chem Phys Lett 93:555

    Google Scholar 

  46. Doll K, Dolg M, Fulde P, Stoll H (1995) Phys Rev B 52:4842

    Google Scholar 

  47. Steinbrenner U, Bergner A, Dolg M, Stoll H (1994) Mol Phys 82:3; (b) Nicklass A, Stoll H (1995) Mol Phys (in press)

    Google Scholar 

  48. Stoll H, Fuentealba P, Dolg M, Flad J, v Szentpály L, Preuss H (1983) J Chem Phys 79:5532

    Google Scholar 

  49. Küchle W, Dolg M, Stoll H, Preuss H (1991) Mol Phys 74:1245;

    Google Scholar 

  50. Dolg M, Küchle W, Stoll H, Preuss H, Schwerdtfeger P (1991) Mol Phys 74:1265

    Google Scholar 

  51. Igel-Mann G, Stoll H, Preuss H (1988) Mol Phys 65:1321, 1329

    Google Scholar 

  52. Fuentealba P, Reyes O, Stoll H, Preuss H (1987) J Chem Phys 87:5338

    Google Scholar 

  53. Jeung GH, Malrieu JP, Daudey JP (1982) J Chem Phys 77:3571

    Google Scholar 

  54. Jeung GH, Daudey JP, Malrieu JP (1983) J Phys B: At Mol Phys 16:699;

    Google Scholar 

  55. Jeung GH, Spiegelmann F, Daudey JP, Malrieu JP (1983) J Phys B: At Mol Phys 16:2659

    Google Scholar 

  56. Foucrault M, Millie P, Daudey JP (1992) J Chem Phys 96:1257;

    Google Scholar 

  57. Boutalib A, Gadéa FX (1992) J Chem Phys 97:1144

    Google Scholar 

  58. Carnell M, Peyerimhoff SD, Heß BA (1989) Z Phys D 13:317

    Google Scholar 

  59. Meyer W, Rosmus P (1975) J Chem Phys 63:2356

    Google Scholar 

  60. Langhoff SR, Bauschlicher CW, Partridge H (1986) J Chem Phys 85:5158

    Google Scholar 

  61. Schwarz WHE (1968) Theor Chim Acta 11:377;

    Google Scholar 

  62. Schwarz WHE (1971) Chem Phys Lett 10:478

    Google Scholar 

  63. Desclaux JP (1975) Comput Phys Commun 9:31;

    Google Scholar 

  64. Desclaux JP (1977) Comput Phys Commun 13:71;

    Google Scholar 

  65. Desclaux JP (1973) At Data Nucl Data Tables 12:311

    Google Scholar 

  66. Program system GRASP, Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) Comput Phys Commun 55:425

    Google Scholar 

  67. Johnson WR, Kolb D (1983) At Data Nucl Data Tables 28:333

    Google Scholar 

  68. Moore CE (1949, 1952, 1958) Natl Bur Stand Circ 467, Vols 1–3, US GPO, Washington DC

    Google Scholar 

  69. Mark F (1986) Theor Chim Acta 70:165

    Google Scholar 

  70. Stanton RE, Havriliak S (1984) J Chem Phys 81:1910

    Google Scholar 

  71. Mark F, Lischka H, Rosicky F (1980) Chem Phys Lett 71:507;

    Google Scholar 

  72. Mark F, Rosicky F (1980) Chem Phys Lett 74:562

    Google Scholar 

  73. Hafner P, Schwarz WHE (1979) Chem Phys Lett 65:537

    Google Scholar 

  74. Esser M, Butscher W, Schwarz WHE (1981) Chem Phys Lett 77:359

    Google Scholar 

  75. Esser M (1984) Int J Quantum Chem 26:313

    Google Scholar 

  76. Schwerdtfeger P, v Szentpály L, Vogel K, Silberbach H, Stoll H, Preuss H (1986) J Chem Phys 84:1606

    Google Scholar 

  77. Rösch N (1983) Chem Phys 80:1

    Google Scholar 

  78. Ahlrichs R (1974) Theor Chim Acta 33:157;

    Google Scholar 

  79. Driessler F, Ahlrichs R (1973) Chem Phys Lett 23:571

    Google Scholar 

  80. Program system COLUMBUS, Shepard R, Shavitt I, Pitzer RM, Comeau DC, Pepper M, Lischka H, Szalay PG, Ahlrichs R, Brown FB, Zhao JG (1988) Int J Quantum Chem Symp 22:149

    Google Scholar 

  81. Dolg M (1995) (in preparation)

  82. Program system TURBOMOLE, Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Google Scholar 

  83. Hess BA (1993), private communication

  84. Hotop H, Lineberger WC (1985) J Phys Chem Ref Data 14:731

    Google Scholar 

  85. Miller TM, Bederson B (1977) Adv At Mol Phys 13:1

    Google Scholar 

  86. Stwalley WC, Zemke WT, Yang SC (1991) J Phys Chem Ref Data 20:153;

    Google Scholar 

  87. Stwalley WC, Zemke WT (1993) J Phys Chem Ref Data 22:87

    Google Scholar 

  88. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Google Scholar 

  89. Schwerdtfeger P, Fischer T, Dolg M, Igel-Mann G, Nicklass A, Stoll H, Haaland A (1995) J Chem Phys 102:2050

    Google Scholar 

  90. Stoll H, Leininger T, Nicklass A, Dolg M, Schwerdtfeger P (in preparation)

  91. Wharton L, Gold LP, Klemperer W (1962) J Chem Phys 37:2149;

    Google Scholar 

  92. Dagdigian PJ (1979) J Chem Phys 71:2328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolg, M. Fully relativistic pseudopotentials for alkaline atoms: Dirac-Hartree-Fock and configuration interaction calculations of alkaline monohydrides. Theoret. Chim. Acta 93, 141–156 (1996). https://doi.org/10.1007/BF01113348

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113348

Key words

Navigation