Skip to main content
Log in

Posteclosional development of phosphorylase activity in chick pectoral muscle

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Total glycogen phosphorylase (GP t ) activity, as obtained by Ca2+ + ATP-activation, increases in the pectoral muscle of the chick during posteclosional ontogeny, beginning at the age of two days. GP a activity is measurable from the third day onwards and thereafter shows a shapr rise. AMP-activation of GP activity is not age-dependent, at least for the first 70 days. (Fig. 2).

  2. 2.

    The ratio of the efficiencies of AMP-activation and of Ca2+-activation decreases. Beginning with the end of the first week posteclosion, the latter mechanism becomes progressively dominant (Fig. 3).

  3. 3.

    Results are discussed with respect to improvement of muscle metabolism, i.e. an increased capability of rapid energy liberation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GIP :

glucose-l-phosphate

GP :

glycogen phosphorylase

GP t :

total GP (activity) after Ca2+ + ATP treatment

GP a :

GP forma (basal activity)

GP ab :

GP after AMP activation

References

  • Bacou F, Vigneron P (1976) Évolution périnatale des voies métaboliques glycolytique et oxydative de divers types de muscles squelettiques du lapin et du poulet. Ann Biol Anim Biochem Biophys 16:675–686

    Google Scholar 

  • Bass A, Brdiczka D, Eyer P, Hofer S, Pette D (1969) Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur J Biochem 10:198–206

    PubMed  Google Scholar 

  • Bass A, Lusch G, Pette D (1970) Postnatal differentiation of the enzyme activity pattern of energy-supplying metabolism in slow (red) and fast (white) muscles of the chicken. Eur J Biochem 13:289–292

    PubMed  Google Scholar 

  • Berdina NA, Rodionov IM (1975) Action of acetylcholine on the phosphorylase of skeletal muscle. Biochimija 40:310–315 (in Russian)

    Google Scholar 

  • Cosmos E (1966) Enzymatic activity of differentiating muscle fibres. I. Development of phosphorylase in muscles of the domestic fowl. Dev Biol 13:163–181

    PubMed  Google Scholar 

  • Cosmos E, Bulter J, Scott R (1965) Phosphorylase activity in differentiating muscle fibres of the domestic fowl. J Histochem Cytochem 13:719–720

    Google Scholar 

  • Crabtree B, Newsholme EA (1972) The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates. Biochem J 126:49–58

    PubMed  Google Scholar 

  • Dalrymple RH, Kastenschmidt LL, Cassens RG (1973) Glycogen and phosphorylase in developing red and white muscle. Growth 37:19–34

    PubMed  Google Scholar 

  • Fischer EH, Becker J-U, Blum HE, Byers B, Heizmann C, Kerrick GW, Lehky P, Malencik DA, Pocinwong S (1976) Concerted regulation of glycogen metabolism and muscle contraction. In: Heilmeyer LMG Jr, Rüegg JC, Wieland T (eds), Molecular basis of motility. Springer, Berlin Heidelberg New York, pp 137–158

    Google Scholar 

  • Hedrick JL, Fischer EH (1965) On the role of pyridoxal 5′-phosphate in phosphorylase. I. Absence of classical vitamin B6-dependent enzymatic activities in muscle glycogen phosphorylase. Biochemistry 4:1337–1343

    PubMed  Google Scholar 

  • Herrmann H, Cox WM (1951) Content of inorganic phosphate and phosphate esters in muscle tissue of chick embryo. Am J Physiol 165:711–715

    PubMed  Google Scholar 

  • Høstmark AT, Grønnerød O, Horn RS (1976) Metabolic control of phosphorylase conversion in muscle. Effect of fasting and refceding on the response of rat diaphragm glycogen phosphorylase, cyclic AMP dependent protein kinase, and phosphorylase b kinase to adrenergic stimulation. Horm Metab Res 8:123–128

    PubMed  Google Scholar 

  • Kendrick-Jones J, Perry SV (1967) The enzymes of adenine nucleotide metabolism in developing skeletal muscle. Biochem J 103:207–214

    PubMed  Google Scholar 

  • Koschtojanz C, Rjabinowskaja A (1935) Beitrag zur Physiologie des Skeletmuskels der Säugetiere auf verschiedenen Stadien ihrer individuellen Entwicklung. Pflügers Arch 235:416–421

    Google Scholar 

  • Novák E, Drummond GI, Skála J, Hahn P (1972) Developmental changes in cyclic AMP, protein kinase, phosphorylase kinase, and phosphorylase in liver, heart, and skeletal muscle of the rat. Arch Biochem Biophys 150:511–518

    PubMed  Google Scholar 

  • Pertseva MN, Zheludkova ZP, Kuznetsova LA (1974) On the participation of 3′, 5′-adenosine monophosphate and of calcium in the action of adrenaline on the carbohydrate metabolism of developing muscle of the chick. Zh Evol Biochim Fiziol 10:592–597 (in Russian)

    Google Scholar 

  • Rinaudo MT, Ponzetto C (1974) UDP-glucose-glycogen glycosyltransferase, phosphorylase, phosphoglucomutase and UDP-glucose pyrophosphorylase in some chick tissues in the first eight days after hatching. Int J Biochem 5:613–616

    Google Scholar 

  • Serebrenikova TP, Hljustina TB (1975) Isoenzymes of the phosphorylase of skeletal muscles in cyclostomes and teleosts. Biochimija 40:652–658 (in Russian)

    Google Scholar 

  • Srivastava U (1968) The effect of age on the variation of the phosphorus content in the muscle, liver and brain of rats. Arch Int Physiol Biochim 76:707–720

    PubMed  Google Scholar 

  • Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685

    PubMed  Google Scholar 

  • Wittenberger C (1970) The energetic economy of the organism in animal evolution. Acta Biotheor 19:171–185

    PubMed  Google Scholar 

  • Wittenberger C (1971) Evolution of the muscle function in vertebrates. Bucharest Publ House of the Romanian Academy (in Romanian)

  • Wittenberger C, Coprean D (1978) Phosphorylase activity of the pectoral muscle during posteclosional ontogenesis of the chick. (Preliminary note). Trav Mus Hist Nat “Gr Antipa” 19:397–400

    Google Scholar 

  • Wittenberger C, Gábos M (1965) On the adenyl-nucleotides of the rat muscle in the course of ontogenesis. Rev Roum Biol Ser Zool 10:63–69

    Google Scholar 

  • Wittenberger C, Coprean D, Popescu V (1977) On the carbohydrate metabolism of pectoral muscle in the ontogeny of chicken. Comp Biochem Physiol 58B:141–146

    Google Scholar 

  • Wollenberger A, Ristau O, Schoffa G (1960) Eine einfache Technik der extrem schnellen Abkühlung größerer Gewebestücke. Pflügers Arch 270:399–412

    Google Scholar 

  • Zalin RJ, Montague W (1975) Changes in cyclic AMP, adenylate cyclase and protein kinase levels during the development of embryonic chick skeletal muscle. Exp Cell Res 93:55–62

    PubMed  Google Scholar 

  • Zheludkova ZP (1969) Changes of the phosphorylase activity in the liver and muscles of chick embryo under the action of adrenaline. In: Kreps EM (ed) Fermenty v evoljutsii zhivotnyh (Enzymes in animal evolution). Nauka, Leningrad, pp 103–110 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittenberger, C., Coprean, D. Posteclosional development of phosphorylase activity in chick pectoral muscle. J Comp Physiol B 141, 439–443 (1981). https://doi.org/10.1007/BF01101464

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01101464

Keywords

Navigation