Skip to main content
Log in

Optimized analysis of the critical behavior in polymer mixtures from Monte Carlo simulations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A complete outline is given for how to determine the critical properties of polymer mixtures with extrapolation methods similar to the Ferrenberg-Swendsen techniques recently devised for spin systems. By measuring not only averages but the whole distribution of the quantities of interest, it is possible to extrapolate the data obtained in only a few simulations nearT c over the entire critical region, thereby saving at least 90% of the computer time normally needed to locate susceptibility peaks or cumulant intersections and still getting more precise results. A complete picture of the critical properties of polymer mixtures in the thermodynamic limit is then obtained with finite-size scaling functions. Since the amount of information extracted from a simulation in this way is drastically increased as compared to conventional methods, the investigation of mixtures with long chains or built-in asymmetries is now possible. As an example, the critical points, exponents, and amplitudes of dense, symmetric polymer mixtures with chain lengths ranging fromN=16 up toN=256 are determined within the framework of the 3D bond fluctuation model using grand canonical simulation techniques. As an example for an asymmetry, the generalization of the method to asymmetric monomer potentials is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory,Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1986).

    Google Scholar 

  2. D. J. Walsh, J. S. Higgins, and S. Rostami,Macromolecules 16:388 (1983).

    Google Scholar 

  3. H. Ito, T. P. Russel, and G. Wignall,Macromolecules 20:2213 (1987).

    Google Scholar 

  4. F. S. Bates,Macromolecules 20:2221 (1987).

    Google Scholar 

  5. R. L. Scott,J. Chem. Phys. 17:279 (1949).

    Google Scholar 

  6. P. G. de Gennes,J. Phys. Lett. (Paris)38:L441 (1977).

    Google Scholar 

  7. A. Budkowski, U. Steiner, J. Klein, and G. Schatz,Phys. Rev. Lett. (1991).

  8. P. J. Flory,J. Chem. Phys. 9:660 (1941).

    Google Scholar 

  9. M. L. Huggins,J. Chem. Phys. 9:440 (1941).

    Google Scholar 

  10. E. A. Guggenheim,Proc. R. Soc. A 183:203, 231 (1944).

    Google Scholar 

  11. W. G. Madden, A. I. Pesci, and K. F. Freed,Macromolecules 23:1181 (1990).

    Google Scholar 

  12. J. E. G. Lipson,Macromolecules 24:1334 (1991).

    Google Scholar 

  13. V. L. Ginzburg,Sov. Phys. Solid State 2:1824 (1960).

    Google Scholar 

  14. J. F. Joanny,J. Phys. A (Paris)11:L117 (1978).

    Google Scholar 

  15. K. Binder,Colloid Polym. Sci. 265:27 (1987).

    Google Scholar 

  16. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

    Google Scholar 

  17. F. S. Bates, J. H. Rosedale, P. Stepanek, T. P. Lodge, P. Wiltzius, G. H. Fredrickson, and R. P. Hjelm, Jr.,Phys. Rev. Lett. 65:1893 (1990).

    Google Scholar 

  18. A. Sariban and K. Binder,J. Chem. Phys. 86:5859 (1987);Macromolecules 21:711 (1988).

    Google Scholar 

  19. A. Sariban and K. Binder,Colloid Polym. Sci. 267:469 (1989).

    Google Scholar 

  20. K. Kremer and K. Binder,Computer Phys. Rep. 8:211 (1988).

    Google Scholar 

  21. K. Binder,Monte Carlo Simulations of Polymer Systems (Springer-Verlag, Heidelberg, 1988), p. 84.

    Google Scholar 

  22. K. Binder, ed.,Monte Carlo Methods in Statistical Physics (Springer-Verlag, Heidelberg, 1986).

    Google Scholar 

  23. K. Binder, ed.,Applications of the Monte Carlo Method in Statistical Physics (Springer-Verlag, Heidelberg, 1987).

    Google Scholar 

  24. K. Binder,J. Chem. Phys. 79:6387 (1983).

    Google Scholar 

  25. W. Paul, K. Binder, D. W. Heermann, and K. Kremer,J. Phys. (Paris)II-1:37 (1991).

    Google Scholar 

  26. H.-P. Deutsch and K. Binder,J. Chem. Phys. 94:2294 (1991).

    Google Scholar 

  27. K. Binder, H.-P. Deutsch, and A. Sariban,J. Non-Cryst. Solids 131–133:635 (1991).

    Google Scholar 

  28. P. H. Verdier and W. H. Stockmayer,J. Chem. Phys. 36:227 (1962).

    Google Scholar 

  29. F. T. Wall and F. Mandel,J. Chem. Phys. 63:4592 (1975).

    Google Scholar 

  30. F. S. Bates, G. D. Wignall, and W. C. Koehler,Phys. Rev. Lett. 55:2425 (1985);Macromolecules 19:934 (1986).

    Google Scholar 

  31. I. Carmesin and K. Kremer,Macromolecules 21:2819 (1988).

    Google Scholar 

  32. H.-P. Deutsch and R. Dickman,J. Chem. Phys. 93:8983 (1990).

    Google Scholar 

  33. Z. W. Salsburg, J. D. Jacobsen, W. Fickett, and W. W. Wood,J. Chem. Phys. 30:64 (1959); D. A. Chesnut and Z. W. Salsburg,J. Chem. Phys. 38:2861 (1963).

    Google Scholar 

  34. G. Bhanot, S. Black, P. Carter, and R. Salvador,Phys. Lett, B 183:331 (1987); G. Bhanot, K.M. Bitar, S. Black, P. Carter, and R.Salvador,Phys. Lett. B 187:381 (1987); G. Bhanot, K. M. Bitar, P. Carter, and R. Salvador,Phys. Lett. B 188:246 (1987).

    Google Scholar 

  35. A. M. Ferrenberg and R. H. Swendsen,Phys. Rev. Lett. 61:2635 (1988);63:1195 (1989).

    Google Scholar 

  36. H.-P. Deutsch, Dissertation, Johannes Gutenberg Universität Mainz, unpublished (1991);Polymer, in press (1992);Macromolecular Chem., in press (1992).

  37. K. Huang,Statistical Mechanics (Wiley, New York. 1987).

    Google Scholar 

  38. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  39. K. Binder and D. W. Heermann,Monte Carlo Simulations in Statistical Physics (Springer-Verlag, Heidelberg, 1988).

    Google Scholar 

  40. J. M. Rickman and S. R. Phillpot,Phys. Rev.Lett. 66:349 (1991).

    Google Scholar 

  41. N. Madras and A. Sokal,J. Stat. Phys. 50:109 (1988).

    Google Scholar 

  42. H. Flyvbjerg and H. G. Petersen,J. Chem. Phys. 91:461 (1989).

    Google Scholar 

  43. C. H. Bennett,J. Comput. Phys. 22:245 (1976).

    Google Scholar 

  44. H.-P. Deutsch and K. Binder, Critical properties of polymer mixtures,Macromolecules (1992).

  45. H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena (Oxford Science Publishers, Oxford, 1971).

    Google Scholar 

  46. S. K. Ma,Modern Theory of Critical Phenomena (Benjamin/Cummings, Reading, Massachusetts, 1976).

    Google Scholar 

  47. K. Binder, inMaterials Science and Technology, R. W. Cahn, P. Haasen, and E. J. Kramer, eds. (VCH, Weinheim, Germany, 1991).

    Google Scholar 

  48. B. Widom,J. Chem. Phys. 43:3898 (1965).

    Google Scholar 

  49. D. Stauffer, M. Ferer, and M. Wortis,Phys. Rev. Lett. 29:345 (1972).

    Google Scholar 

  50. G. S. Pawley, R. H. Swendsen, D. J. Wallace, and K. G. Wilson,Phys. Rev. B 29:4030 (1984).

    Google Scholar 

  51. K. Binder, M. Nauenberg, V. Privman, and A. P. Young,Phys. Rev. B 31:1498 (1985).

    Google Scholar 

  52. V. Privman and M. E. Fisher,J. Stat. Phys. 33:385 (1983).

    Google Scholar 

  53. K. Binder,Z. Phys. B 61:13 (1985).

    Google Scholar 

  54. M. E. Fisher, inCritical Phenomena, Proceedings 1970 E. Fermi International School of Physics, Vol. 51, M. S. Green, ed. (Academic Press, New York, 1971).

    Google Scholar 

  55. M. N. Barber, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and M. S. Green, eds. (Academic Press, New York, 1983).

    Google Scholar 

  56. J. L. Cardy, ed.,Finity Size Scaling (North-Holland, Amsterdam, 1988).

    Google Scholar 

  57. V. Privman, inFinite Size Scaling and Numerical Simulation of Statistical Systems, V. Privman, ed. (World Scientific, Singapore, 1990).

    Google Scholar 

  58. K. Binder,Z. Phys. B 43:119 (1981);Phys. Rev. Lett. 47:693 (1981).

    Google Scholar 

  59. A. M. Ferrenberg and D. P. Landau, Critical behavior of the three dimensional Ising model: A high resolution study, Preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutsch, H.P. Optimized analysis of the critical behavior in polymer mixtures from Monte Carlo simulations. J Stat Phys 67, 1039–1082 (1992). https://doi.org/10.1007/BF01049009

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049009

Key words

Navigation