Skip to main content
Log in

Abstract

Pentasil zeolites of ZSM-5 type are synthesised hydrothermally using triethyl-n-proplyammonium bromide (TEPA-Br) and triethyl-n-butylammonium bromide (TEBA-Br). The crystallization kinetics, followed by XRD, SEM and thermal analysis, clearly demonstrate the influence of size and molecular weight of the templating quaternary ammonium cation (QAC) species on the rates of nucleation and crystallization. The values of the apparent activation energies for nucleation and crystal growth indicate that both nucleation and crystal growth are faster when TEPA-Br rather than TEBA-Br is used as a template. The quantitative identification of intergrown phases characterizes both the phases to be ZSM-5 zeolite. Thermoanalytical curves for both these zeolites in as-synthesised forms exhibit two-step oxidative decomposition of the occluded organic species. This suggests that the quaternary ammonium cation may be located at two energetically different sites within the zeolite channels. The equilibrium sorption capacity, however, is found to increase in the order of size and molecular weight of the templating species in both the zeolites. The nature of acid site distribution, obtained from the temperature programmed desorption of ammonia is found to be independent of the templating species used during the synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Argauer and G. R. Landolt:U.S. Pat. 3,702,886 (1972)

  2. A. Erdem and L. B. Sand:U.S. Pat. 60, 241 (1979).

    Google Scholar 

  3. S. B. Kulkarni, V. P. Shiralkar, A. N. Kotasthane, R. B. Borade and P. Ratnasamy:Zeolites 2, 313 (1982).

    Google Scholar 

  4. A. N. Kotasthane, V. P. Shiralkar, S. G. Hedge and S. B. Kulkarni:Zeolite 6, 253 (1986).

    Google Scholar 

  5. Z. Gabelica, M. Cavez-Bierman, P. Boudart, A. Gourgue and J. B. Nagy:Zeolite Synthesis, Structure, Technology and Applications, Studies in Surface Science and Catalysis, 24, B. Drzaj, S. Hocevar and S. Pejovnik, Eds., Elsevier, New York, 1985. p. 55.

    Google Scholar 

  6. E. Narita, K. Sato and T. Okabe:Chem. Lett. 1055 (1984).

  7. M. Avrami:J. Chem. Phys. 9, 177 (1941) and B. V. Erofeev, C.R. Acad. Sci., U.S.S.R. 52, 511 (1946).

    Google Scholar 

  8. Z. Gabelica, N. Blom and E. G. Derouane:Appl. Catal. 5, 227 (1983).

    Google Scholar 

  9. B. M. Lok, T. R. Cannan and C. A. Messina:Zeolites 3, 282 (1983).

    Google Scholar 

  10. K. J. Chao, T. C. Tasi, M. S. Chen and I. Wang:J. Chem. Soc. Faraday Trans. 1 77, 547 (1981).

    Google Scholar 

  11. F. Paulik, J. Paulik and L. Erdey:Talanta 13, 1405 (1946).

    Google Scholar 

  12. K. J. Chao:Proc. Natl. Sci. Counc., ROC,3, 233 (1979).

    Google Scholar 

  13. D. M. Biddy, N. B. Milestone and L. P. Aldridge:Nature (London) 285, 30 (1980).

    Google Scholar 

  14. A. N. Kotasthane and V. P. Shiralkar:Thermochim. Acta 102, 37 (1986).

    Google Scholar 

  15. V. S. Nayak and L. Rickert:Acta Phys. Chem. 31, 157 (1985).

    Google Scholar 

  16. R. Mostovich and L. B. Sand:Zeolites 2, 143 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, P.N., Rao, G.N., Kotasthane, A.N. et al. Influence of template on crystallization of ZSM-5 zeolites. J Incl Phenom Macrocycl Chem 9, 91–99 (1990). https://doi.org/10.1007/BF01041253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01041253

Key words

Navigation