Skip to main content
Log in

Solution of the mean spherical approximation for hard ions and dipoles of arbitrary size

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The general solution of the mean spherical approximation (MSA) for an arbitrary mixture of hard spherical ions and dipoles, in which the ions can be of different size, is found. This solution is given in terms of three parameters that are calculated by solving an algebraic equation. Two of these parameters are scaling parameters required to satisfy the general symmetry of the pair correlation functions, and are similar to the one introduced in the solution of the MSA for an ionic mixture in earlier work. For equal size and low ionic concentration, we get a rather explicit solution of the MSA, which is formally similar to the Waisman-Lebowitz solution of the restricted primitive model, but with a concentration-dependent dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Percus and G. Yevick,Phys, Rev. 136:B290 (1964).

    Google Scholar 

  2. J. L. Lebowitz and J. K. Percus,Phys. Rev. 144:251 (1966).

    Google Scholar 

  3. E. Weisman and J. L. Lebowitz,J. Chem. Phys. 52:4307 (1970);56:3086, 3093 (1972).

    Google Scholar 

  4. M. S. Wertheim,J. Chem. Phys. 55:4291 (1971).

    Google Scholar 

  5. H. C. Andersen and D. Chandler,J. Chem. Phys. 57:1818 (1972); D. Chandler and H. C. Andersen,J. Chem. Phys. 57:1930 (1972).

    Google Scholar 

  6. E. Waisman,J. Chem. Phys. 59:495 (1973).

    Google Scholar 

  7. J. S. Hoye, J. L. Lebowitz, and G. Stell,J. Chem. Phys. 61:3263 (1974).

    Google Scholar 

  8. L. Blum,Chem. Phys. Lett. 26:200 (1974);

    Google Scholar 

  9. S. A. Adelman and J. M. Deutch,J. Chem. Phys. 60:3935 (1974).

    Google Scholar 

  10. L. Blum,Mol. Phys. 30:1529 (1975).

    Google Scholar 

  11. L. Blum and A. J. Torruella,J. Chem. Phys. 56:303 (1972); L. Blum,J. Chem. Phys. 57:1862 (1972);58:3295 (1973).

    Google Scholar 

  12. L. Blum and A. H. Narten,Adv. Chem. Phys. 34:203 (1976).

    Google Scholar 

  13. A. R. Edmonds,Angular Momenta in Quantum Mechanics (Princeton, N.J., 1960).

    Google Scholar 

  14. H. L. Frisch and J. L. Lebowitz,Classical Fluids (Benjamin, New York, 1964).

    Google Scholar 

  15. M. Abramowitz and I. A. Stegun, eds.,Natl. Bur. Stds. Appl. Math. Ser., No. 55 (1965).

  16. B. C. Carlson and G. S. Rushbrooke,Proc. Cambr. Phil. Soc. 46:626 (1950).

    Google Scholar 

  17. G. S. Rushbrooke, G. Stell, and J. S. Ht∅ye,Mol. Phys. 26:1199 (1973).

    Google Scholar 

  18. R. J. Baxter,J. Chem. Phys. 52:4559 (1970).

    Google Scholar 

  19. L. Blum and H. Tibavisco, unpublished; H. Tibavisco, Thesis, Univ. of Puerto Rico (1974).

  20. J. S. H∅ye and G. Stell,J. Chem. Phys. 67:439 (1977).

    Google Scholar 

  21. L. Blum and J. S. H∅ye,J. Phys. Chem. 81:1311 (1977); K. Hiroike,Mol. Phys., in press.

    Google Scholar 

  22. S. A. Adelman,J. Chem. Phys. 64:724 (1976);Chem. Phys. Lett. 33:567 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part through NSF grant 77-04597.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, L. Solution of the mean spherical approximation for hard ions and dipoles of arbitrary size. J Stat Phys 18, 451–474 (1978). https://doi.org/10.1007/BF01014518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014518

Key words

Navigation