Skip to main content
Log in

A rigorous theory of finite-size scaling at first-order phase transitions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A large class of classical lattice models describing the coexistence of a finite number of stable states at low temperatures is considered. The dependence of the finite-volume magnetizationM per(h, L) in cubes of sizeL dunder periodic boundary conditions on the external fieldh is analyzed. For the case where two phases coexist at the infinite-volume transition pointh t , we prove that, independent of the details of the model, the finite-volume magnetization per lattice site behaves likeM per(h t )+M tanh[ML d(h−ht)] withM per(h) denoting the infinite-volume magnetization and M=1/2[M per(h t +0)−M per(h t −0)]. Introducing the finite-size transition pointh m (L) as the point where the finite-volume susceptibility attains the maximum, we show that, in the case of asymmetric field-driven transitions, its shift ish t h m (L)=O(L −2d), in contrast to claims in the literature. Starting from the obvious observation that the number of stable phases has a local maximum at the transition point, we propose a new way of determining the pointh t from finite-size data with a shift that is exponentially small inL. Finally, the finite-size effects are discussed also in the case where more than two phases coexist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Fisher and A. N. Berker,Phys. Rev. B 26:2507 (1982).

    Google Scholar 

  2. V. Privman and M. E. Fisher,J. Stat. Phys. 33:385 (1983).

    Google Scholar 

  3. V. Privman, ed.,Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).

    Google Scholar 

  4. K. Binder and D. P. Landau,Phys. Rev. B 30:1477 (1984).

    Google Scholar 

  5. M. S. S. Challa, D. P. Landau, and K. Binder,Phys. Rev. B 34:1841 (1986).

    Google Scholar 

  6. C. Borgs and J. Imbrie,Commun. Math. Phys. 123:305 (1989).

    Google Scholar 

  7. C. Borgs, R. Kotecký, and S. Miracle-Solé, in preparation.

  8. J. Imbrie,Commun. Math. Phys. 82:261, 305 (1981).

    Google Scholar 

  9. C. Borgs, J. Fröhlich, and R. Waxler,Nucl. Phys. B 328:611 (1989).

    Google Scholar 

  10. M. Zahradník,Commun. Math. Phys. 93:559 (1984).

    Google Scholar 

  11. P. Holický, R. Kotecký, and M. Zahradník, in preparation.

  12. C. Borgs and R. Waxler,Commun. Math. Phys. 126:483 (1990).

    Google Scholar 

  13. M. Blume,Phys. Rev. 141:517 (1966); H. Capel,Physica 32:966 (1966).

    Google Scholar 

  14. J. Bricmont and J. Slawny, First order phase transitions and perturbation theory, inStatistical Mechanics and Field Theory: Mathematical Aspects, T. Dorlas, N. Hugenholtz, and M. Winnik, eds. (Springer, Berlin, 1986).

    Google Scholar 

  15. J. Slawny, Low temperature properties of classical lattice systems: Phase transitions and phase diagrams, inPhase Transitions and Critical Phenomena, Vol. 10, C. Domb and J. L. Lebowitz, eds. (Academic Press, London).

  16. E. Seiler,Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics (Springer, Berlin, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from: Institut für Theoretische Physik, FU-Berlin, D-1000 Berlin 33, Federal Republic of Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgs, C., Kotecký, R. A rigorous theory of finite-size scaling at first-order phase transitions. J Stat Phys 61, 79–119 (1990). https://doi.org/10.1007/BF01013955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013955

Key words

Navigation