Skip to main content
Log in

Influence of a strong longitudinal static electric field on free carrier faraday effect in an n-type InSb at room temperature at submillimeter wave frequencies

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The expression for free carrier Faraday rotation θ and for ellipticity Δ, as the function of the applied parallel static electric field\(\mathop {E_0 }\limits_ \to \) and static magnetic field\(\mathop {B_0 }\limits_ \to \) for a given value of wave angular frequency and electron concentration N0, are obtained and theoretically analyzed with the aid of one-dimensional linearized wave theory and Kane's non-parabolic isotropic dispersion law. It is shown that the maximum Faraday rotation occurs near the cyclotron resonance condition, which can be expressed as\(\chi \omega = \omega _{ce} \), where\(\chi = 1{1 \mathord{\left/ {\vphantom {1 {\sqrt {1 - ({{v_0 } \mathord{\left/ {\vphantom {{v_0 } {v_c }}} \right. \kern-\nulldelimiterspace} {v_c }})^2 } }}} \right. \kern-\nulldelimiterspace} {\sqrt {1 - ({{v_0 } \mathord{\left/ {\vphantom {{v_0 } {v_c }}} \right. \kern-\nulldelimiterspace} {v_c }})^2 } }}\),\(v_c = \sqrt {{{\varepsilon _g } \mathord{\left/ {\vphantom {{\varepsilon _g } {2m}}} \right. \kern-\nulldelimiterspace} {2m}}} *\), and\(\omega _{ce} = ({{eB_0 } \mathord{\left/ {\vphantom {{eB_0 } {m*}}} \right. \kern-\nulldelimiterspace} {m*}})\). Here m* and e denote the effective mass and charge of electron, respectively. ɛg is the forbidden bandgap of semiconductor. v0 is the carrier drift velocity, which is a non-linear function of E0 in high field condition. A possibility of a simple way of determining the non-linear “v0 vs E0” characteristics of semiconductors by the measurement of Faraday rotation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Shimura, N. Takeuchi, and T. Yajima, Jap. J. Appl. Phys.9, 1334 (1970).

    Google Scholar 

  2. T. O. Poehler and C. H. Wang, Phys. Rev. B6, 1483 (1972).

    Google Scholar 

  3. J. K. Furdyna, Appl. Opt.6, 675 (1967).

    Google Scholar 

  4. D. J. White, J. Appl. Phys.39, 5083 (1968).

    Google Scholar 

  5. V. Gulyaev, JETP Lett.1, 81 (1965).

    Google Scholar 

  6. A. V. Subashiev, Sov. Phys.-Solid State7, 751 (1965).

    Google Scholar 

  7. M. S. Sodha, S. K. Sharma, and P. K. Dubey, J. Appl. Phys.42, 2400 (1971).

    Google Scholar 

  8. O. Kane, J. Phys. Chem. Solids1, 249 (1957).

    Google Scholar 

  9. A. M. Kalmykov, N. Ya. Kotsarenko, and S. V. Koshevaya, Radio Eng. Electron. Phys.21, 83 (1976).

    Google Scholar 

  10. Z. I. Kiryashina, B. N. Klimov, V. A. Ivanchenko, and G. Y. Naumenko, Sov. Phys.-Semicond.9, 1353 (1976).

    Google Scholar 

  11. F. G. Bass and V. A. Pogrebnyak, Sov. Phys.-Solid State14, 1518 (1972).

    Google Scholar 

  12. H. C. Hsieh, Phys. Rev. B7, 4160 (1972).

    Google Scholar 

  13. E. M. Conwell,High Field Transport in Semiconductors, Academic Press, New York, 1967, p. 197.

    Google Scholar 

  14. K. Seeger,Semiconductor Physics, Springer-Verlag, Wien, 1973, p. 205.

    Google Scholar 

  15. B. Donovan and T. Medcalf, Br. J. Appl. Phys.15, 1139 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, H.C. Influence of a strong longitudinal static electric field on free carrier faraday effect in an n-type InSb at room temperature at submillimeter wave frequencies. Int J Infrared Milli Waves 2, 131–147 (1981). https://doi.org/10.1007/BF01007477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007477

Key words

Navigation