Skip to main content
Log in

Maximum crystal growth rate and its corresponding state

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

For the temperature dependence of linear crystal growth rate, the activation energy for the molecular transport could be expressed in terms of the equation of either WLF or Arrhenius. On the basis of the Arrhenius expression, the corresponding state of the crystal growth rate was formulated theoretically as

$${{\ln ({G \mathord{\left/ {\vphantom {G {G_{max} }}} \right. \kern-\nulldelimiterspace} {G_{max} }})} \mathord{\left/ {\vphantom {{\ln ({G \mathord{\left/ {\vphantom {G {G_{max} }}} \right. \kern-\nulldelimiterspace} {G_{max} }})} {\ln ({{G_{max} } \mathord{\left/ {\vphantom {{G_{max} } {G_o }}} \right. \kern-\nulldelimiterspace} {G_o }})}}} \right. \kern-\nulldelimiterspace} {\ln ({{G_{max} } \mathord{\left/ {\vphantom {{G_{max} } {G_o }}} \right. \kern-\nulldelimiterspace} {G_o }})}} = {{(T_{cmax} - T)^2 } \mathord{\left/ {\vphantom {{(T_{cmax} - T)^2 } {T(T_m - T)}}} \right. \kern-\nulldelimiterspace} {T(T_m - T)}}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J.Turnbull, Appl. Phys.,21, 1022 (1950)

    Google Scholar 

  2. J.D.Hoffman, J.J.Weeks, J. Chem. Phys.,37, 1723 (1962)

    Google Scholar 

  3. A.Gandica, J.H.Magill, Polymer,13, 595 (1972)

    Google Scholar 

  4. J.H.Magill, H.M.Li, A.Gandica, J.Cryst.Growth,19, 361 (1973)

    Google Scholar 

  5. V.P.Privalko, Polymer,19, 1019 (1978)

    Google Scholar 

  6. L.Mandelkern, N.L.Jain, H.Kim, J.Polym.Sci., A-2,6, 165 (1968)

    Google Scholar 

  7. T.Suzuki, A.J.Kovacs, Polym.J.,1, 82 (1970)

    Google Scholar 

  8. J.D.Hoffman, T.Davis, J.I.Lauritzen, “Treaties on Solid State Chemistry”, Vol. 3, Ed.,N.B.Hannay, Plenum Press, New York, p-555 (1976)

    Google Scholar 

  9. N.Okui, Polymer J.,19, 1309 (1987)

    Google Scholar 

  10. N.Okui, Polymer, to be published

  11. R.A.Hayes, J.Appl.Polym.Sci.,5, 318 (1961)

    Google Scholar 

  12. D.W.van Krevelen, “Properties of Polymers”, Elsevier Sci. Pub. Co., p-433 (1976)

  13. V.P.Privalko, Polym.J.,10, 607 (1978)

    Google Scholar 

  14. B.Wunderlich, “Macromolecular Physics”, vol. 2, Academic Press Inc., p-163 (1973)

  15. H.D.Keith, F.J.Padden.Jr, J.Appl.Phys.35, 1286 (1964)

    Google Scholar 

  16. A.S.Kenyon, R.C.Gross, A.L.Wunrstner, J.Poly.Sci.,40, 159 (1959)

    Google Scholar 

  17. J.Boon, J.M.Azuce, J.Poly.Sci., A-2,6, 885 (1968)

    Google Scholar 

  18. F.van Antwerpen, D.W.van Krevelen, J.Poly.Sci., Phys.Ed.,10, 2423 (1972)

    Google Scholar 

  19. J.H.Magill, J.Appl.Phys.,35, 3249 (1964)

    Google Scholar 

  20. J.H.Magill, J.Poly.Sci., A-2,5, 89 (1967)

    Google Scholar 

  21. V.K.Steiner, K.J.Lucas, K.Ueberreiter, Kolloid.Z.Z.Polym.,214, 23 (1966)

    Google Scholar 

  22. M.Takayanagi, N.Kusumoto, J.Chem.Soc. Japan (Ind.Chem.Sect),62, 587 (1959)

    Google Scholar 

  23. J.H.Magill, Makromol.Chem.,86, 283 (1965)

    Google Scholar 

  24. J.H.Magill, Polymer,6, 367 (1965)

    Google Scholar 

  25. B.B.Burnett. W.F.McDevit, J.Appl.Phys.,28, 1101 (1957)

    Google Scholar 

  26. R.G.Crystal, J.Polym.Sci. A-2,8, 2153 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okui, N. Maximum crystal growth rate and its corresponding state. Polymer Bulletin 23, 111–118 (1990). https://doi.org/10.1007/BF00983972

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00983972

Keywords

Navigation