Skip to main content

Classical and Nonclassical Theories of Crystal Growth

  • Chapter
  • First Online:
New Perspectives on Mineral Nucleation and Growth

Abstract

In this chapter, we discuss classical and nonclassical concepts of crystal growth that coexist in the literature as explanations for the formation of both mono- and polycrystalline particles, often of the same substances. Crystalline particles with intraparticle nanosized subunits, nanoparticulate surface features, and complex morphologies have led to the development of new nonclassical theories of crystal growth based on the aggregation of nanocrystals in solution. At the same time, similar morphologies are explained by monomer incorporation at conditions of stress incorporation, which results in nucleation at the growth front and accompanying branching at the nanoscale. The two mechanisms are differently affected by important process variables like supersaturation, temperature, or additives and are analyzed with respect to their capability of predicting crystal growth rates. A quantitative description of the formation kinetics of the solid phases is essential for the design and operation of industrial precipitation and crystallization processes and for the understanding of fundamental principles in material design and biomineralization processes. In this chapter, we emphasize the importance of supersaturation in order to account for the extensive nanoparticle formation required to build micron-sized particles by nano-aggregative growth, as well as the accompanying change in the population density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreassen JP (2005) Formation mechanism and morphology in precipitation of vaterite – nano aggregation or crystal growth? J Cryst Growth 274:256–264

    Article  Google Scholar 

  • Andreassen JP, Hounslow MJ (2004) Growth and aggregation of vaterite in seeded-batch experiments. Aiche J 50:2772–2782

    Article  Google Scholar 

  • Andreassen JP, Flaten EM, Beck R, Lewis AE (2010) Investigations of spherulitic growth in industrial crystallization. Chem Eng Res Des 88:1163–1168

    Article  Google Scholar 

  • Andreassen JP, Beck R, Nergaard M (2012) Biomimetic type morphologies of calcium carbonate grown in absence of additives. Faraday Discuss 159:247–261

    Article  Google Scholar 

  • Asenath-Smith E, Li H, Keene EC, Seh ZW, Estroff LA (2012) Crystal growth of calcium carbonate in hydrogels as a model of biomineralization. Adv Funct Mater 22:2891–2914

    Article  Google Scholar 

  • Bai F, Wang D, Huo Z, Chen W, Liu L, Liang X, Chen C, Wang X, Peng Q, Li Y (2007) A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew Chem Int Ed 46:6650–6653

    Article  Google Scholar 

  • Beck R, Andreassen JP (2010) Spherulitic growth of calcium carbonate. Cryst Growth Des 10:2934–2947

    Article  Google Scholar 

  • Busch S, Dolhaine H, Duchesne A, Heinz S, Hochrein O, Laeri F, Podebrad O, Vietze U, Weiland T, Kniep R (1999) Biomimetic morphogenesis of fluorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur J Inorg Chem 1999:1643–1653

    Article  Google Scholar 

  • Chernov AA (1984) Modern crystallography III: crystal growth. Springer, Berlin

    Book  Google Scholar 

  • Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591

    Article  Google Scholar 

  • Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, Chichester

    Book  Google Scholar 

  • Costodes VCT, Mausse CF, Molala K, Lewis AE (2006) A simple approach for determining particle size enlargement mechanisms in nickel reduction. Int J Miner Process 78:93–100

    Article  Google Scholar 

  • De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93

    Article  Google Scholar 

  • De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S, Joester D, Zhang H, Rimer JD, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Cölfen H, Dove PM (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760

    Article  Google Scholar 

  • De Yoreo JJ, Sommerdijk NAJM, Dove PM (2017) Nucleation pathways in electrolyte solutions. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 1–24

    Google Scholar 

  • Dirksen JA, Benjelloun S, Ring TA (1990) Modelling the precipitation of copper oxalate aggregates. Colloid Polym Sci 268:864–876

    Article  Google Scholar 

  • Granasy L, Pusztai T, Tegze G, Warren JA, Douglas JF (2005) Growth and form of spherulites. Phys Rev E 72:011605

    Article  Google Scholar 

  • Hodson ME, Benning LG, Demarchi B, Penkman KEH, Rodriguez-Blanco JD, Schofield PF, Versteegh EAA (2015) Biomineralisation by earthworms – an investigation into the stability and distribution of amorphous calcium carbonate. Geochem Trans 16:1–16

    Article  Google Scholar 

  • Judat B, Kind M (2004) Morphology and internal structure of barium sulfate – Derivation of a new growth mechanism. J Colloid Interface Sci 269:341–353

    Article  Google Scholar 

  • Kalsin AM, Fialkowski M, Paszewski M, Smoukov SK, Bishop KJM, Grzybowski BA (2006) Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312:420–424

    Article  Google Scholar 

  • Kim YY, Schenk AS, Ihli J, Kulak AN, Hetherington NBJ, Tang CC, Schmahl WW, Griesshaber E, Hyett G, Meldrum FC (2014) A critical analysis of calcium carbonate mesocrystals. Nat Commun 5:4341

    Google Scholar 

  • Li D, Nielsen MH, Lee JRI, Frandsen C, Banfield JF, De Yoreo JJ (2012) Direction-specific interactions control crystal growth by oriented attachment. Science 336:1014–1018

    Article  Google Scholar 

  • Libert S, Gorshkov V, Goia D, Matijević E, Privman V (2003) Model of controlled synthesis of uniform colloid particles: cadmium sulfide. Langmuir 19:10679–10683

    Article  Google Scholar 

  • Matijevic E (1993) Preparation and properties of uniform size colloids. Chem Mater 5:412–426

    Article  Google Scholar 

  • Mckenzie JA, Vasconcelos C (2009) Dolomite mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology 56:205–219

    Article  Google Scholar 

  • Nielsen MH, Li D, Zhang H, Aloni S, HanT FC, Seto J, Banfield JF, Cölfen H, De Yoreo JJ (2014) Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc Microanal 20:425–436

    Article  Google Scholar 

  • Ocana M, Rodriguezclemente R, Serna CJ (1995) Uniform colloidal particles in solution – formation mechanisms. Adv Mater 7:212–216

    Article  Google Scholar 

  • Park J, Privman V, Matijević E (2001) Model of formation of monodispersed colloids. J Phys Chem B 105:11630–11635

    Article  Google Scholar 

  • Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971

    Article  Google Scholar 

  • Penn RL, Banfield JF (1999) Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochimica Et Cosmochimica Acta 63:1549–1557

    Article  Google Scholar 

  • Penn RL, Li D, Soltis JA (2017) A perspective on the particle-based crystal growth of ferric oxides, oxyhydroxides, and hydrous oxides. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 257–274

    Google Scholar 

  • Pina CM, Becker U, Risthaus P, Bosbach D, Putnis A (1998) Molecular-scale mechanisms of crystal growth in barite. Nature 395:483–486

    Article  Google Scholar 

  • Pokroy B, Kabalah-Amitai L, Polishchuk I, Devol RT, Blonsky AZ, Sun CY, Marcus MA, Scholl A, Gilbert PUPA (2015) Narrowly distributed crystal orientation in biomineral vaterite. Chem Mater 27:6516–6523

    Article  Google Scholar 

  • Qi L, Cölfen H, Antonietti M (2000) Crystal design of barium sulfate using double-hydrophilic block copolymers. Angew Chem Int Ed 39:604–607

    Article  Google Scholar 

  • Rao A, Cölfen H (2017) Mineralization schemes in the living world: mesocrystals. In: Van Driessche AES, Kellermeier M, Benning LG, Gebauer D (eds) New perspectives on mineral nucleation and growth, Springer, Cham, pp 155–184

    Google Scholar 

  • Sand KK, Rodriguez-Blanco JD, Makovicky E, Benning LG, Stipp SLS (2012) Crystallization of CaCO3 in water-alcohol mixtures: spherulitic growth, polymorph stabilization, and morphology change. Cryst Growth Des 12:842–853

    Article  Google Scholar 

  • Shtukenberg AG, Punin YO, Gunn E, Kahr B (2012) Spherulites. Chem Rev 112:1805–1838

    Article  Google Scholar 

  • Soare LC, Bowen P, Lemaitre J, Hofmann H (2006) Precipitation of nanostructured copper oxalate: substructure and growth mechanism. J Phys Chem B 110:17763–17771

    Article  Google Scholar 

  • Sugimoto T, Khan MM, Muramatsu A (1993) Preparation of monodisperse peanut-type α-Fe2O3 particles from condensed ferric hydroxide gel. Colloids Surf A Physicochem Eng Asp 70:167–169

    Article  Google Scholar 

  • Sunagawa I (2005) Crystals: growth, morphology and perfection. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Teng HH, Dove PM, De Yoreo JJ (2000) Kinetics of calcite growth: surface processes and relationships to macroscopic rate laws. Geochimica Et Cosmochimica Acta 64:2255–2266

    Article  Google Scholar 

  • Van Driessche AES, Benning LG, Rodriguez-Blanco JD, Ossorio M, Bots P, García-Ruiz JM (2012) The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 335:69–72

    Article  Google Scholar 

  • Xu AW, Antonietti M, Cölfen H, Fang YP (2006) Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Adv Funct Mater 16:903–908

    Article  Google Scholar 

  • Yuwono VM, Burrows ND, Soltis JA, Penn RL (2010) Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J Am Chem Soc 132:2163–2165

    Article  Google Scholar 

  • Zhang H, De Yoreo JJ, Banfield JF (2014) A unified description of attachment-based crystal growth. ACS Nano 8:6526–6530

    Article  Google Scholar 

  • Zheng H, Smith RK, Jun YW, Kisielowski C, Dahmen U, Paul Alivisatos A (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–1312

    Article  Google Scholar 

  • Zhuang J, Wu H, Yang Y, Cao YC (2008) Controlling colloidal superparticle growth through solvophobic interactions. Angew Chem Int Ed 47:2208–2212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens-Petter Andreassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andreassen, JP., Lewis, A.E. (2017). Classical and Nonclassical Theories of Crystal Growth. In: Van Driessche, A., Kellermeier, M., Benning, L., Gebauer, D. (eds) New Perspectives on Mineral Nucleation and Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-45669-0_7

Download citation

Publish with us

Policies and ethics