Skip to main content

Entropy Production and Morphological Selection in Crystal Growth

  • Chapter
  • First Online:
Beyond the Second Law

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This chapter discusses morphological transitions during non-equilibrium crystallization and coexistence of crystals of different shapes from the viewpoint of the maximum entropy production principle (MEPP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is only in this approximation that the analytical solutions can be advanced sufficiently far.

  2. 2.

    Superscript “Max” refers the fact that this is the largest possible critical size; the actual critical size will be smaller under finite-amplitude perturbation.

  3. 3.

    Above this size the crystal itself growth and below this size it shrinks.

  4. 4.

    In line with the terminology accepted in the theory of equilibrium phase transitions, it is reasonable if the calculated minimum critical size R minC is called, by analogy, a binodal, and the stability size R maxC , which was observed when the perturbation amplitude was almost zero, is termed a spinodal of a non-equilibrium transition.

  5. 5.

    This principle can be most generally formulated as follows [2931]: at each level of description, with preset external constraints, the relationship between the cause and the response of a non-equilibrium system is established such as to maximize the entropy production.

  6. 6.

    In line with the terminology used in the theory of equilibrium phase transitions, this curve is named as binodal (it separates the region, in which the phase is stable, from the region, in which it is metastable and unstable).

  7. 7.

    For example, one morphological phase implies the initial (spherical or cylindrical) form of growth, and the other phase means the initial form with some added harmonic.

  8. 8.

    These radii were rendered dimensionless to the critical radius of nucleation.

  9. 9.

    The results were similar for a spherical crystal [28].

  10. 10.

    Martyushev L. M. has also published under the alternate (French) spelling Martiouchev L.M.

Abbreviations

D :

Diffusion coefficient

V :

Local velocity of the crystal

k, l :

Wave-numbers of perturbing modes

u :

Solute concentration

u 1 :

Equilibrium solute concentrations near the crystal surface

u 2 :

Density of the crystal

R :

Size of a crystal

R * :

Critical radii of nucleation of a crystal

R crit :

Critical size for instability of a crystal

R max :

Maximal size for instability of a crystal (spinodal)

R min :

Minimal size for instability of a crystal (binodal)

R minEP :

Minimum critical size, which was calculated using entropy production

α :

Dimensionless parameters characterizing the growth regime

β :

Coefficient of attachment kinetics

δ :

Initial amplitude of perturbation

Σ :

Local entropy production

Ω:

The equation of the crystal surface

C :

Cylindrical

S :

Spherical

Reference

Martyushev L. M. has also published under the alternate (French) spelling Martiouchev L.M.

  1. Shochet, O., Ben-Jacob, E.: Coexistence of morphologies in diffusive patterning. Phys. Rev. E 48(6), R4168–R4171 (1993)

    Article  Google Scholar 

  2. Chan, S.K., Reimer, H.H., Kahlweit, M.J.: On the stationary growth shape of NH4Cl dendrities. J. Cryst. Growth 32, 303–315 (1976)

    Article  Google Scholar 

  3. Sawada, Y., Dougherty, A., Gollub, J.P.: Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56(12), 1260–1263 (1986)

    Article  Google Scholar 

  4. Shochet, O., Kassner, K., Ben-Jacob, E., et al.: Morphology transitions during non-equilibrium growth. II. Morphology diagram and characterization of the transition. Phys. A 187, 87–111 (1992)

    Article  Google Scholar 

  5. Ihle, T., Müller-Krumbhaar, H.: Fractal and compact growth morphologies in phase transitions with diffusion transport. Phys. Rev. E 49(4), 2972–2991 (1994)

    Article  Google Scholar 

  6. Honjo, H., Ohta, S., Matsushita, M.: Phase diagram of a growing succionitrile crystal in supercooling-anisotropy phase space. Phys. Rev. A 36(9), 4555–4558 (1987)

    Article  Google Scholar 

  7. Sawada, Y., Perrin, B., Tabeling, P., Bouissou, P.: Oscillatory growth of dendritic tips in a three-dimensional system. Phys. Rev. A 43(10), 5537–5540 (1991)

    Article  Google Scholar 

  8. Flores, A., Corvera-Poir, E., Garza, C., Castillo, R.: Growth and morphology in Langmuir monolayers. Europhys. Lett. 74(5), 799–805 (2006)

    Article  Google Scholar 

  9. Harkeand, M., Motschmann, H.: On the transition state between the oil water and air water interface. Langmuir 14(2), 313–318 (1998)

    Article  Google Scholar 

  10. Akamatsu, S., Faivre, G., Ihle, T.: Symmetry—broken double fingers and seaweed patterns in thin-film directional solidification of a non-faceted cubic crystal. Phys. Rev. E 51(5), 4751–4773 (1995)

    Article  Google Scholar 

  11. Lamelas, F.J., Seader, S., Zunic, M., Sloane, C.V., Xiong, M.: Morphology transitions during the growth of alkali halides from solution. Phys.Rev. B. 67, 045414(11) (2003)

    Google Scholar 

  12. Shibkov, A.A., Golovin, YuI, Zheltov, M.A., et al.: Morphology diagram of non-equilibrium patterns of ice crystals growing in supercooled water. Phys. A 319, 65–72 (2003)

    Article  Google Scholar 

  13. Ben-Jacob, E., Garik, P., Mueller, T., Grier, D.: Characterization of morphology transitions in diffusion-controlled systems. Phys. Rev. A 38(3), 1370–1380 (1989)

    Article  Google Scholar 

  14. Ben-Jacob, E., Garik, P.: The formation of patterns in non-equilibrium growth. Nature 343, 523–530 (1990)

    Article  Google Scholar 

  15. Mullins, W.W., Sekerka, R.F.: Morphological stability of a particle when growth is controlled by diffusion or heat flow. J. Appl. Phys. 34, 323–340 (1963)

    Article  Google Scholar 

  16. Coriell, S.R., Parker, R.L.: Stability of the shape of a solid cylinder growing in a diffusion field. J. Appl. Phys. 36(2), 632–637 (1965)

    Article  Google Scholar 

  17. Martiouchev, L.M., Seleznev, V.D., Kuznetsova, I.E.: Application of the principle of maximum entropy production to the analysis of the morphological stability of a growing crystal. J. Exper. Theor. Phys. 91(1), 132–143 (2000)

    Article  Google Scholar 

  18. Martyushev, L.M., Kuznetsova, I.E., Seleznev, V.D.: Calculation of the complete morphological phase diagram for non-equilibrium growth of a spherical crystal under arbitrary surface kinetics. J. Exper. Theor. Phys. 94(2), 307–314 (2002)

    Article  Google Scholar 

  19. Martiouchev, L.M., Sal’nicova, E.M.: An analysis of the morphological transitions during non-equilibrium growth of a cylindrical crystal from solution. Tech. Phys. Lett. 28(3), 242–245 (2002)

    Article  Google Scholar 

  20. Martyushev, L.M., Sal’nicova, E.M.: Morphological transition in the development of a cylindrical crystal. J. Phys.: Cond. Matter. 15, 1137–1146 (2003)

    Google Scholar 

  21. Brush, L.N., Sekerka, R.F., McFadden, G.B.: A numerical and analytical study of nonlinear bifurcations associated with the morphological stability of two-dimensional single crystal. J. Cryst. Growth 100, 89–108 (1990)

    Article  Google Scholar 

  22. Debroy, P.P., Sekerka, R.F.: Weakly nonlinear morphological instability of a cylindrical crystal growing from a pure undercooled melt. Phys. Rev. E 53(6), 6244–6252 (1996)

    Article  Google Scholar 

  23. Debroy, P.P., Sekerka, R.F.: Weakly nonlinear morphological instability of a spherical crystal growing from a pure undercooled melt. Phys. Rev. E 51, 4608–4651 (1995)

    Article  Google Scholar 

  24. Martyushev, L.M., Sal’nicova, E.M., Chervontseva, E.A.: Weakly nonlinear analysis of the morphological stability of a two-dimensional cylindrical crystal. J. Exper. Theor. Phys. 98(5), 986–996 (2004)

    Google Scholar 

  25. Martyushev, L.M., Chervontseva, E.A.: Morphological stability of a two-dimensional cylindrical crystal with a square-law supersaturation dependence of the growth rate. J. Phys.: Cond. Matter. 17, 2889–2902 (2005)

    Article  Google Scholar 

  26. Martyushev, L.M., Serebrennikov, S.V.: Morphological stability of a crystal with respect to arbitrary boundary perturbation. Tech. Phys. Lett. 32(7), 614–617 (2006)

    Article  Google Scholar 

  27. Martyushev, L.M., Chervontseva, E.A.: On the problem of the metastable region at morphological instability. Phys. Lett. A. 373, 4206–4213 (2009)

    Article  Google Scholar 

  28. Martyushev, L.M., Chervontseva, E.A.: Coexistence of axially disturbed spherical particle during their nonequilibrium growth. EPL (Europhys. Lett.) 90, 10012(6 pages) (2010)

    Google Scholar 

  29. Martyushev, L.M., Konovalov, M.S.: Thermodynamic model of nonequilibrium phase transitions. Phys. Rev. E. 84(1), 011113(7 pages) (2011)

    Google Scholar 

  30. Martyushev, L.M.: Entropy production and morphological transitions in non-equilibrium processes. arXiv:1011.4137v1

    Google Scholar 

  31. Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)

    Article  MathSciNet  Google Scholar 

  32. Kleidon, A., Lorenz, R.D. (eds.): Non-equilibrium thermodynamics and the production of entropy in life, Earth, and beyond. Springer, Heidelberg (2004)

    Google Scholar 

  33. Ozawa, H., Ohmura, A., Lorenz, R.D., Pujol, T.: The second law of thermodynamics and the global climate systems—a rewiew of the maximum entropy production principle. Rev. Geophys. 41(4), 1018–1042 (2003)

    Article  Google Scholar 

  34. Sawada, Y.: A thermodynamic variational principle in nonlinear systems far from equilibrium. J. Stat. Phys. 34, 1039–1045 (1984)

    Article  MathSciNet  Google Scholar 

  35. Kirkaldy, J.S.: Entropy criteria applied to pattern selection in systems with free boundaries. Metall. Trans. 16A, 1781–1797 (1985)

    Article  Google Scholar 

  36. Kirkaldy, J.S.: Spontaneous evolution of spatiotemporal patterns in materials. Rep. Prog. Phys. 55, 723–795 (1992)

    Article  Google Scholar 

  37. Hill, A.: Entropy production as the selection rule between different growth morphologies. Nature 348, 426–428 (1990)

    Article  Google Scholar 

  38. Hill, A.: Reply to Morphologies of growth, written by Lavenda B.H. Nature 351, 529–530 (1991)

    Article  Google Scholar 

  39. Wang, Mu: Nai-ben Ming.: Alternating morphology transitions in electro chemical deposition. Phys. Rev. Lett. 71(1), 113–116 (1993)

    Article  Google Scholar 

  40. Martiouchev, L.M., Seleznev, V.D.: Maximum-Entropy production principle as a criterion for the morphological-phase selection in the crystallization process. Dokl. Phys. 45(4), 129–131 (2000)

    Article  Google Scholar 

  41. Martyushev, L.M., Kuznetsova, I.E., Nazarova, A.S.: Morphological phase diagram of a spherical crystal growing under non-equilibrium conditions at the growth rate as a quadratic function of supersaturation. Phys. Solid State 46(11), 2115–2120 (2004)

    Article  Google Scholar 

  42. Martyushev, L.M.: Some interesting consequences of the maximum entropy production principle. J. Exper. Theor. Phys. 104(4), 651–654 (2007)

    Article  Google Scholar 

  43. Niven, R.K.: Simultaneous extrema in the entropy production for steady-state fluid flow in parallel pipes. J. Non-Equilib. Thermod. 35, 347–378 (2010)

    MATH  Google Scholar 

  44. Martyushev, L.M., Birzina, A.I., Konovalov, M.S., Sergeev, A.P.: Experimental investigation of the onset of instability in a radial Hele-Shaw cell. Phys. Rev. E. 80(6), 066306(9 pages) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid M. Martyushev .

Editor information

Editors and Affiliations

Glossary

Binodal

(binodal curve or coexistence curve) denotes the condition at which two distinct equilibrium or non-equilibrium phases may coexist. Beyond the binodal, the perturbations (or fluctuations) of phase will lead to phase transition. Before the binodal, the phase will be stable with respect to any perturbations (or fluctuations). For equilibrium phase transition, the binodal is defined by the condition at which the chemical potential is equal in each equilibrium phase. There is hypothesis that for non-equilibrium phase transition, the binodal is defined by the condition at which the entropy production is equal in each non-equilibrium phase.

Spinodal

(spinodal curve) denotes the boundary of absolute instability of equilibrium or non-equilibrium phases. Beyond the spinodal, infinitesimally small perturbations (or fluctuations) of phase will lead to phase transition. Before the spinodal, the phase will be at least stable or metastable with respect to perturbations (or fluctuations).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martyushev, L.M. (2014). Entropy Production and Morphological Selection in Crystal Growth. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics