Skip to main content
Log in

On the smoothness constraint in the intensity-based estimation of the parallax field

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this contribution, the estimation of the parallax field is considered in a mathematical way. First, a mathematical model for the image formation is developed : This model describes how the parallax field influences the left and the right image. Then, we tackle the inverse problem : We calculate the parallax field given the left and the right image. In fact, the problem of estimating the parallax field is mathematically formulated as the maximum a posteriori probability (MAP) estimation of a Gaussian signal given two (noisy) measured signals, i.e. the left and the right image. Estimation problems like this are considered in [2]. We apply that theory to the problem at hand and prove that the MAP estimate for the parallax field minimizes a certain functional. This functional is compared to the functional of the traditional intensity-based method. Both functionals consist of a term associated with the displaced frame difference and a term associated with the smoothness of the parallax field. Our functional differs from the traditional one in the smoothness term. Next, we consider the searching for the minimum of this functional and develop a new iterative procedure to obtain the MAP estimate in a few iterations. Our procedure is quite different from the Gauss-Seidel or Jacobi schemes [3] that are normally used for this purpose. Finally, some results are given to compare the performance of our smoothness constraint to the traditional one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.K.P. Horn, “Robot Vision”, The MIT Press, Cambridge, Massachusetts-London, England, 1986.

    Google Scholar 

  2. H.L. Van Trees, “Detection, Estimation, and Modulation Theory (Part I)”, John Wiley and Sons Inc., New York-London-Sydney, 1968.

    Google Scholar 

  3. D. Terzopoulos, “Image Analysis using Multigrid Relaxation Methods”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 2, pp. 129–140, Mar. 1986.

    Google Scholar 

  4. T. Poggio, V. Torre, C. Koch, “Computational Vision and Regularisation Theory”, “Readings in Computer Vision”, pp. 638–645, Morgan Kaufmann Publishers Inc., Los Altos, California, 1987.

    Google Scholar 

  5. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, “Numerical Recipes in C: The Art of Scientific Computing”, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1988.

    Google Scholar 

  6. L.H. Quam, “Hierarchical Warp Stereo”, Proceedings of the DARPA Image Understanding Workshop, pp. 149–155, New Orleans, USA, 1984.

  7. H.K. Nishihara, “Practical Real-Time Imaging Stereo Matcher”, Optical Engineering, Vol. 23, No. 5, pp. 536–545, 1984.

    Google Scholar 

  8. M.R.M. Jenkin, A.D. Jepson, J.K. Tsotsos, “Techniques for Disparity Measurement”, Computer Vision, Graphics and Image Processing: Image Understanding, Vol. 53, No. 1, pp. 14–30, Jan. 1991.

    Google Scholar 

  9. D. De Vleeschauwer, “A Intensity-based Coarse-to-fine Approach to Reliably Measure Binocular Disparity”, Computer Vision, Graphics and Image Processing: Image Understanding, Vol. 57, No. 2, pp. 186–204, Mar. 1993.

    Google Scholar 

  10. T.Y. Tsai, “Multiframe Image Point Matching and 3-D Surface Reconstruction”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 2, pp. 159–174, Mar. 1983.

    Google Scholar 

  11. M. Waldowski, “A New Segmentation Algorithm for Videophone Applications Based on Stereo Image Pairs”, IEEE Transactions on Communications Theory, Vol. COM-39, No. 12, pp. 1856–1868, Dec. 1991.

    Google Scholar 

  12. N. Ayache, F. Lustman, “Trinocular Stereo Vision for Robotics”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-13, No. 1, pp. 73–85, July 1991.

    Google Scholar 

  13. G. Brookshire, M. Nadler, C. Lee, “Automated Stereophotogrammetry”, Computer Vision, Graphics and Image Processing 52, No. 2, pp. 276–296, Nov. 1990.

    Google Scholar 

  14. S.T. Barnard, W.B. Thompson, “Disparity Analysis of Images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4, pp. 333–340, July 1980.

    Google Scholar 

  15. Y. Ohta, T. Kanade, “Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-7, No. 2, pp. 139–154, July 1985.

    Google Scholar 

  16. S.A. Lloyd, E.R. Haddow, J.F. Boyce, “A Parallel Binocular Stereo Algorithm Utilizing Dynamic Programming and Relaxation Labelling”, Computer Vision, Graphics and Image Processing 39, No. 2, pp. 202–225, Aug. 1987.

    Google Scholar 

  17. S.A. Lloyd, “Stereo Matching using Intra- and Inter-Row Dynamic Programming”, Pattern Recognition Letters 4, pp. 273–277, Sep. 1986.

    Google Scholar 

  18. D. De Vleeschauwer, J. D'Haeyer, “A Matching Algorithm to Measure Binocular Disparity”, Fist European Workshop on 3DTV, Berlin, BRD, 5–7 Apr. 1989.

  19. G. Mediodi, R. Nevatia, “Segment-Based Stereo Matching”, Computer Vision, Graphics and Image Processing 31, No. 1, pp. 2–18, July 1985.

    Google Scholar 

  20. J.J. Clark, P.D. Lawrence, “A Theoretical Basis for Diffrequency Stereo”, Computer Vision, Graphics and Image Processing 35, No. 1, pp. 1–19, July 1986.

    Google Scholar 

  21. T. Aach, A. Kaup, “MAP Estimation of Dense Disparity Fields for Stereoscopic Images”, Proceedings of the 2nd Singapore International Conference on Image Processing, pp. 113–117, Singapore, 7–11 Sept. 1992.

  22. S.T. Barnard, “A Stochastic Approach to Stereo Vision”, Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia, USA, pp. 676–680, 1986.

  23. S.T. Barnard, “Stochastic Stereo Matching over Scale”, International Journal of Computer Vision, Vol. 3, No. 7, pp. 17–32, 1989.

    Google Scholar 

  24. R. March, “Computation of Stereo Disparity using Regularization”, Pattern Recognition Letters 8, pp. 181–187, Oct. 1988.

    Google Scholar 

  25. A. Scheuing, H. Niemann, “Computing Depth from Stereo Images by Using Optical Flow”, Pattern Recognition Letters 4, pp. 205–212, July 1986.

    Google Scholar 

  26. J. Weng, N. Ahuja, T.S. Huang, “Matching Two Perspectives”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-14, No. 8, pp. 806–825, Aug. 1992.

    Google Scholar 

  27. A. Singh, P. Allen, “Image-Flow Computation: an Estimation-Theoretic Framework and a Unified Perspective”, Computer Vision, Graphics and Image Processing: Image Understanding, Vol. 56, No. 2, pp. 152–177, Sept. 1992.

    Google Scholar 

  28. A. Tamataoui, C. Labit, “Constrained Disparity and Motion Estimators for 3DTV Image Sequence Coding”, Signal Processing, Image Communication, Vol. 4, No. 1, pp. 45–55, Nov. 1991.

    Google Scholar 

  29. A. Tamataoui, C. Labit, “Constrained Motion Estimators for 3DTV Sequence Coding”, Signal Processing VI: Theories and Applications, J. Vandewalle, R. Boite, M. Moonen, A. Oosterlinck (eds.), Vol. 3, pp. 1291–1295, Elsevier Science Publishers, Amsterdam-London-New York-Tokyo, 1992.

    Google Scholar 

  30. J.L. Dugelay, D. Pelé, “Motion and Disparity Analysis of a Stereoscopic Sequence Application to 3DTV Coding”, Signal Processing VI: Theories and Applications, J. Vandewalle, R. Boite, M. Moonen, A. Oosterlinck (eds.), Vol. 3, pp. 1295–1299, Elsevier Science Publishers, Amsterdam-London-New York-Tokyo, 1992.

    Google Scholar 

  31. W.E.L. Grimson, “Computational Experiments with a Feature Based Stereo Algorithm”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-7, No. 1, pp. 17–34, Jan. 1985.

    Google Scholar 

  32. E. Krotkov, K. Henderson, R. Kories, “Stereo Ranging with Verging Cameras”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-12, No. 12, pp. 1200–1205, Dec. 1990.

    Google Scholar 

  33. Y.C. Hsieh, D.M. McKeown, F.P. Perlant, “Performance Evaluation of Scene Registration and Stereo Matching for Carthographic Feature Extraction”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-14, No. 2, pp. 214–239, Feb. 1992.

    Google Scholar 

  34. H.P. Moravec, “The Stanford Cart and the CMU Rover”, Proceedings of the IEEE, Vol. 71, No. 7, Jul. 1983.

  35. L. Matthies, “Stereo Vision for Planetary Rovers: Stochastic Modeling to Near Real-Time Implementation”, International Journal of Computer Vision, Vol. 8, No. 1, pp. 71–91, 1992.

    Google Scholar 

  36. J. Steurer, “Coding Stereoscopic Images for the Human Observer”, European Workshop on 3DTV Signal Processing “From Capture to Display”, Rennes, France, 9–10 Nov. 1992.

  37. J. Steurer, “Stereobildcodierung für den Menschen als Beobachter” (in German), PHD thesis at the “Lehrstuhl für Nachrichtentechnik der Technische Universität München”, 1992.

  38. D. De Vleeschauwer, “Stereoscopische Beeldverwerking: Analyse en Codering” (in Dutch), PHD thesis at the “Faculteit der Toegepaste Wetenschappen van de Universiteit Gent”, Jun. 1993.

  39. H. Yamaguchi, Y. Tatehira, K. Akiyama, Y. Kobayashi, “Stereoscopic Images Disparity for Predictive Coding”, IEEE International Conference on Acoustics, Speech and Signal Processing ICCASP'89, Vol. 3, pp. 1976–1980, Glasgow, Scotland, 23–26 May 1989.

    Google Scholar 

  40. D. De Vleeschauwer, “Stereoscopic Image Processing: Image Coding”, Proceedings of the 1991 ITE Annual Convention, ITEC'91, pp. 623–627, Tokyo, Jul. 1991.

  41. D. De Vleeschauwer, “Coding of the Disparity Field and the Correction Signal in Predictive 3DTV Coding”, First International Festival of 3D Images, pp. 213–223, Paris, France, 25–30 Sept. 1991.

  42. D. De Vleeschauwer, “A Symmetric Encoding Scheme of Stereo Images”, Second Workshop on Stereoscopic Television, Darmstadt, BRD, 27–28 Sept. 1990.

  43. F. Chassaing, D. Pelé, “3DTV Compatible Transmission of Stereoscopic Television Signal”, First International Festival of 3D Images, pp. 223–235, Paris, France, 25–30 Sept. 1991.

  44. F. Chassaing, B. Choquet, D. Pelé, “A Stereoscopic Television System (3D-TV) and Compatible Transmission on a MAC channel (3D-MAC)”, Signal Processing, Image Communication, Vol. 4, No. 1, pp. 33–45, Nov. 1991.

    Google Scholar 

  45. M.G. Perkins, “Data Compression of Stereopairs”, IEEE Transactions on Communications Theory, Vol. COM-40, No. 4, pp. 684–696, Apr. 1992.

    Google Scholar 

  46. H. Kusaka, “Three-Dimensional Image Technology”, Proceedings of the International Joint Session of ITEC'91 and 3Dmt Research, Tokyo, Jul. 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vleeschauwer, D. On the smoothness constraint in the intensity-based estimation of the parallax field. Multidim Syst Sign Process 6, 113–135 (1995). https://doi.org/10.1007/BF00981567

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00981567

Keywords

Navigation