Skip to main content
Log in

A variational level set model combining with local Gaussian fitting and Markov random field regularization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To effectively and accurately segment images in the presence of intensity inhomogeneity and noise, a variational level set model based on maximum a posteriori (MAP) criterion is proposed in this paper. In the Bayesian framework, the posterior probability of the corrected smooth image under the observation condition is described by a likelihood function of the observation multiplied by a prior probability of the corrected smooth image. In the model, the likelihood function of the observation is computed under the assumption that the observed image obeys the local Gaussian distribution with both varying means and variances; and based on Markov random field (MRF) model, the prior probability of the corrected smooth image is defined as a Gibbs energy function that is related to the total variation. Maximizing the likelihood function can effectively capture the local change of image intensity, and maximizing the prior probability can restrain the influence of noise. An alternating direction iterative algorithm combining with fixed point iteration and gradient descent is introduced to solve the proposed model. The experiments for both synthetic and real images validate the proposed model. In addition, compared with several state-of-the-art variational level set models, the proposed model show the best segmentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alpert S, Galun M, Basri R et al (2007) Image segmentation by probabilistic bottom-up aggregation and cue inte- gration. IEEE Conference on Computer Vision and Pattern Recognition CVPR 34(2):315–327

    Google Scholar 

  2. Brox T, Cremers D (2007) On the statistical interpretation of the piecewise smooth Mumford-Shah functional. In: International Conference on Scale Space and Variational Methods in Computer Vision 203–213

  3. Brox T, Cremers D (2009) On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional. Int J Comput Vis 84:184–193

    Article  Google Scholar 

  4. Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc 36:192–236

    MathSciNet  MATH  Google Scholar 

  5. Chen S, Sun T, Yang F et al (2018) An improved optimum-path forest clustering algorithm for remote sensing image segmentation. Comput Geosci:38–46

  6. Chen X, Williams B, Vallabhaneni S et al (2019) Learning active contour models for medical image segmentation. Computer Vision and Pattern Recognition:11632–11640

  7. Cheng W, Yang X (2020) Robust credibilistic fuzzy local information clustering with spatial information constraints. Digital Signal Processing 97:102615

    Article  Google Scholar 

  8. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22:61–79

    Article  Google Scholar 

  9. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

    Article  Google Scholar 

  10. Cai Q, Liu H, Zhou S et al (2018) An adaptive-scale active contour model for inhomogeneous image segmentation and bias field estimation. Pattern Recogn:79–93

  11. Chang H, Zhuang A, Valentino D et al (2009) Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47(1):122–135

    Article  Google Scholar 

  12. Deng C, Liu X, Li C et al (2018) Active multi-kernel domain adaptation for hyperspectral image classification. Pattern Recogn 77:306–315

    Article  Google Scholar 

  13. Dai L, Ding J, Yang J (2015) Inhomogeneity-embedded active contour Gor natural image segmentation. Pattern Recogn 48:2513–2529

    Article  Google Scholar 

  14. Darolti C, Mertins A, Bodensteiner C et al (2008) Local region descriptors for active contours evolution. IEEE Trans Image Process 17:2275–2288

    Article  MathSciNet  Google Scholar 

  15. Dong B, Ri J, Weng G (2019) Active contour model based on local bias field estimation for image segmentation. Signal processing image. Communication:187–199

  16. Gao S, Bui T (2005) Image segmentation and selective smoothing by using Mumford-Shah model. IEEE Trans Image Process 14:1537–1549

    Article  Google Scholar 

  17. Gu Y, Wang X, Lian L et al (2017) Generalizing Mumford-shah model for multiphase piecewise smooth image segmentation. IEEE Trans Image Process 26:942–952

    Article  MathSciNet  Google Scholar 

  18. Geman S, Geman D (1984) Stochastic relaxation, gibbs distribution, and the baresian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  Google Scholar 

  19. Han J, Quan R, Zhang D et al (2018) Robust object co-segmentation using background prior. IEEE Trans Image Process 27:1639–1651

    Article  MathSciNet  Google Scholar 

  20. Hatamizadeh A, Sengupta D, Terzopoulos D (2019) End-to-end deep convolutional active contours for image segmentation. arXiv preprint arXiv:1909.13359

  21. Hai Y, He F, Pan Y (2019) A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimed Tools Appl 79(10)

  22. Jia X, Zhang Y, He L et al (2018) Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Syst 99:3027–3041

    Google Scholar 

  23. Lu S, Liu S, Wang Y et al (2017) A note on the marker-based watershed method for x-ray image segmentation. Comput Methods Prog Biomed 141:1–2

    Article  Google Scholar 

  24. Liu Y, He C, Wu Y(2018) Variational model with kernel metric-based data term for noisy image segmentation. Digit Signal Proc 78:42–55

  25. Lankton S, Nain D, Yezzi A(2007) Hybrid geodesic region-based curve evolutions for image segmentation. Int Soc Opt Photon 6510:1–3

  26. Lankton S, Tannenbaum A (2008) Localizing region-based active contours. IEEE Trans Image Process 17:2029–2039

    Article  MathSciNet  Google Scholar 

  27. Li C, Kao C, Gore J (2007) Active contours with local binary fitting energy. IEEE Confer Comput Vision Patt Recogn 3:339–+

  28. Liu S, Peng Y (2012) A local region-based Chan-Vese model for image segmentation. Pattern Recogn 45:2769–2779

    Article  Google Scholar 

  29. Li C, Huang R, Ding Z et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20:2007–2016

    Article  MathSciNet  Google Scholar 

  30. Liu C, Liu W, Xing W (2019) A weighted edge-based level set method based on multi-local statistical information for noisy image segmentation. J Vis Commun Image Represent 59:89–107

    Article  Google Scholar 

  31. Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17:158–175

    Article  Google Scholar 

  32. Mumford D, Shah J(1985) Boundary detection by minimizing functionals. IEEE Confer Comput Vision Pattern Recog 17:137–154

  33. Nie F, Cai G, Li J et al (2017) Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans Image Process 27:1501–1511

    Article  MathSciNet  Google Scholar 

  34. Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  Google Scholar 

  35. Piovano J, Rousson M, Papadopoulo T (2007) Effcient segmentation of piecewise smooth images. International Conference on scale space and variational methods in Computer Vision 4485:709–720

    Article  Google Scholar 

  36. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46:223–247

    Article  Google Scholar 

  37. Ranjan R, Patel V, Chellappa R (2019) A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans Pattern Anal Mach Intell 41:121–135

    Article  Google Scholar 

  38. Su H, He F, Pan Y (2018) A novel region-based active contour model via local patch similarity measure for image segmentation. Multimed Tools Appl 77:24097C24119

    Google Scholar 

  39. Shattuck D, Sandor-Leahy S, Schaper K (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13:856–876

    Article  Google Scholar 

  40. Tsai A, Yezzi A, Willsky A (2001) Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Process 10:1169–1186

    Article  Google Scholar 

  41. Tang L, Fang Z, Xiang C et al (2015) Chan-Vese model combined with L1 fitting term. Journal of Computer Aided Design and Graphics 27(09):1707–1715

    Google Scholar 

  42. Vese T, Chan T (2002) A multiphase level set framework for image segmentation using the Mumford and shah model. Int J Comput Vis 50:271–293

    Article  Google Scholar 

  43. Wang L, Pan C (2014) Robust level set image segmentation via a local correntropy-based k-means clustering. Pattern Recogn 47:1917–1925

    Article  Google Scholar 

  44. Wang X, Huang D, Xu H (2010) An effcient local Chan-Vese model for image segmentation. Pattern Recogn 43:603–618

    Article  Google Scholar 

  45. Wang L, He L, Mishra A (2009) Active contours driven by local gaussian distribution fitting energy. Signal Process 89:2435–2447

    Article  Google Scholar 

  46. Wang L, Zhu J, ShengMet al(2018) Simultaneous segmentation and bias field estimation using local fitted images. Pattern Recogn 145–155.

  47. Zhang Z, Chen X (2017) Dictionary learing-based hough transform for road detection in multispectral image. IEEE Geosic Remote Sensing Letters 14:2330–2334

    Article  Google Scholar 

  48. Zhang H, Tang L, He C (2019) A variational level set model for multiscale image segmentation. Inf Sci 493:152–175

    Article  MathSciNet  Google Scholar 

  49. Zhang K, Zhang L, Lam K et al (2015) A level set approach to image segmentation with intensity inhomogeneity. IEEE Transactions on Cybernetics 46:546–557

    Article  Google Scholar 

  50. Zhang K, Song H, Zhang L (2010) Active contours driven by local image fitting energy. Pattern Recogn 43:1199–1206

    Article  Google Scholar 

  51. Zhou Y, Shi W, Chen W et al (2015) Active contours driven by localizing region and edge-based intensity fitting energy with application to segmentation of the left ventricle in cardiac CT images. Neurocomputing 156:199–210

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China under Grant No. 62061016, 61561019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Tang, L., Zhang, H. et al. A variational level set model combining with local Gaussian fitting and Markov random field regularization. Multimed Tools Appl 81, 4511–4534 (2022). https://doi.org/10.1007/s11042-021-11783-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11783-2

Keywords

Navigation