Skip to main content

Parametric Segmentation of Nonlinear Structures in Visual Data: An Accelerated Sampling Approach

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications 2

Abstract

In many image processing applications, identification of nonlinear structures in image data is of particular interest. Examples include fitting multiple ellipse patterns to image data, estimation and segmentation of multiple motions in subsequent images in video, and fitting nonlinear patterns to cell images for cancer detection in biomedical applications. This chapter introduces a novel approach to calculate a first order approximation for point distances from general nonlinear structures. We also propose an accelerated sampling method for robust segmentation of multiple structures. Our sampling method is substantially faster than random sampling used in the well-known RANSAC method as it effectively makes use of the spatial proximity of the points belonging to each structure. A fast high-breakdown robust estimator called Accelerated-LKS (A-LKS) is devised using the accelerated search to minimize the kth order statistics of squared distances. A number of experiments on homography estimation problems are presented. Those experiments include cases with up to eight different motions and we benchmark the performance of the proposed estimator in comparison with a number of state-of-the-art robust estimators. We also show the result of applying A-LKS to solve ellipse fitting and motion segmentation in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to note that the dimension of data space is not always equal to the dimension of the parameter space denoted by p in this chapter. More precisely, p is the minimum number of data points that can specify a unique model candidate, which is not necessarily equal to the dimension of the data points. For instance in the fundamental estimation problem, each data point includes a pair of matching pixels and the dimension of each data point is 4, but the dimension of the parameter space is 8.

  2. 2.

    It is important to note that ε is the ratio of gross outliers and in the presence of several structures, it is far less than \({\epsilon }^{{\prime}}\) in Eqs. (9.27) and (9.28) which equals the sum of gross and pseudo outlier ratios. In the presence of n obj structures with an equal number of inliers, \({\epsilon }^{{\prime}} =\epsilon +(1-\epsilon )(1 - 1/n_{\mathrm{obj}})\). For instance, if ε = 5% of data are gross outliers and there are n obj = 8 structures, we have \({\epsilon }^{{\prime}} = 88\%.\)

References

  1. Yu X, Bui TD, Krzyzak A (1994) Robust estimation for range image segmentation and reconstruction. IEEE Trans PAMI 16(5):530–538

    Article  Google Scholar 

  2. Lee KM, Meer P, Park RH (1998) Robust adaptive segmentation of range images. IEEE Trans PAMI 20(2):200–205

    Article  Google Scholar 

  3. Bab-Hadiashar A, Suter D (1999) Robust segmentation of visual data using ranked unbiased scale estimator. Robotica 17:649–660

    Article  Google Scholar 

  4. Bab-Hadiashar A, Suter D (2000) Range and motion segmentation. In: Bab-Hadiashar A, Suter D (eds) Data segmentation and model selection for computer vision. Springer, New York, pp 119–142

    Chapter  Google Scholar 

  5. Bab-Hadiashar A, Gheissari N (2004) Model selection for range segmentation of curved objects. In: Springer-Verlag lecture notes on computer science (LNCS), vol 3021 (European conference on computer vision - ECCV 2004). Springer, Prague, pp 83–94

    Google Scholar 

  6. Bab-Hadiashar A, Gheissari N (2006) Range image segmentation using surface selection criterion. IEEE Trans Image Process 15(7):2006–2018

    Article  Google Scholar 

  7. Ding Y, Ping X, Hu M, Wang D (2005) Range image segmentation based on randomized Hough transform. Pattern Recogn Lett 26(13):2033–2041

    Article  Google Scholar 

  8. Min J, Bowyer KW (2005) Improved range image segmentation by analyzing surface fit patterns. Comput Vis Image Understand 97(2):242–458

    Article  Google Scholar 

  9. Wang H, Suter D (2004) MDPE: a very robust estimator for model fitting and range image segmentation. Int J Comput Vis 59(2):139–166

    Article  Google Scholar 

  10. Han F, Tu Z, Zhu SC (2004) Range image segmentation by an effective jump-diffusion method. IEEE Trans Pattern Anal Mach Intell 26(9):1138–1153

    Article  Google Scholar 

  11. Hesami R, Bab-Hadiashar A, Hoseinnezhad R (2010) Range segmentation of large building exteriors: a hierarchical robust approach. Comput Vis Image Understand 114(4):475–490

    Article  Google Scholar 

  12. Ben MWYR X (2012) Dual-ellipse fitting approach for robust gait periodicity detection. Neurocomputing 79:173–178

    Article  Google Scholar 

  13. Volkau I, Puspitasari F, Ng TT, Bhanu Prakash KN, Gupta V, Nowinski WL (2012) A simple and fast method of 3D registration and statistical landmark localization for sparse multi-modal/time-series neuroimages based on cortex ellipse fitting. Neuroradiol J 25(1):98–111

    Google Scholar 

  14. Sun JG, Zhou YC (2012) Skin color detection method based on direct least square ellipse fitting in CrCbCg space. Advanced Materials Research. 2012;366:28–31.

    Article  Google Scholar 

  15. Zhang C, Sun C, Pham TD, Vallotton P, Fenech M (2010) Detection of nuclear buds based on ellipse fitting. In: DICTA 2010, pp 178–183

    Google Scholar 

  16. Marhaban MH, Kaid RS, Mohd SB (2010) Automatic estimation of gestational age in ultrasound images based on direct least-squares fitting of ellipse. IEEJ Trans Electr Electron Eng 5(5):569–573

    Article  Google Scholar 

  17. Torr PHS (1998) Geometric motion segmentation and model selection. Philos Trans R Soc A 1321–1340

    Google Scholar 

  18. Hajder L, Chetverikov D (2006) Weak-perspective structure from motion for strongly contaminated data. Pattern Recogn Lett 27(14):1581–1589

    Article  Google Scholar 

  19. Vidal R, Ma Y, Soatto S, Sastry S (2006) Two-view multibody structure from motion. Int J Comput Vis 68(1):7–25

    Article  Google Scholar 

  20. Qian G, Chellappa R, Zheng Q (2005) Bayesian algorithms for simultaneous structure from motion estimation of multiple independently moving objects. IEEE Trans Image Process 14(1):94–109

    Article  MathSciNet  Google Scholar 

  21. Schindler K, Suter D (2006) Two-view multibody structure-and-motion with outliers through model selection. IEEE Trans Pattern Anal Mach Intell 28(6):983–995

    Article  Google Scholar 

  22. Basah SN, Bab-Hadiashar A, Hoseinnezhad R (2009) Conditions for motion-background segmentation using fundamental matrix. IET Comput Vis 3(4):189–200

    Article  Google Scholar 

  23. Bartoli A, Sturm P (2004) Nonlinear estimation of the fundamental matrix with minimal parameters. IEEE Trans Pattern Anal Mach Intell 26(3):426–432

    Article  Google Scholar 

  24. Tsui CC (2004) An overview of the applications and solutions of a fundamental matrix equation pair. J Franklin Inst 341(6):465–475

    Article  MathSciNet  Google Scholar 

  25. Chin TJ, Yu J, Suter D (2012) Accelerated hypothesis generation for multistructure data via preference analysis. IEEE Trans Pattern Anal Mach Intell 34(4):625–638

    Article  Google Scholar 

  26. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, New York

    Google Scholar 

  27. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun Assoc Comput Mach 24(6):381–395

    MathSciNet  Google Scholar 

  28. Hesami R, Bab-Hadiashar A, Hosseinnezhad R (2007) A novel hierarchical technique for range segmentation of large building exteriors. In: Bebis G (ed) Third international symposium on visual computing (ISVC07). LNCS, vol 4842/2007. Springer, Lake Tahoe, pp 75–85

    Google Scholar 

  29. Hoseinnezhad R, Bab-Hadiashar A (2007) A novel high breakdown M-estimator for visual data segmentation. In: ICCV. IEEE, Rio de Janeiro

    Google Scholar 

  30. Hoseinnezhad R, Bab-Hadiashar A (2011) An M-estimator for high breakdown robust estimation in computer vision. Computer vision and image understanding (CVIU) 115(8):1145–1156

    Article  Google Scholar 

  31. Tordoff B, Murray DW (2002) Guided sampling and consensus for motion estimation. In: ECCV, Copenhagen, pp 82–69

    Google Scholar 

  32. Nister D (2005) Preemptive RANSAC for live structure and motion estimation. Mach Vis Appl 16(5):321–329

    Article  Google Scholar 

  33. Subbarao R, Meer P (2006) Subspace estimation using Projection based M-estimators over Grassman manifolds. In: Horst Bischof ALAP (ed) 9th European conference on computer vision (ECCV’06). Springer, Graz, pp 301–312

    Google Scholar 

  34. Chum O, Matas J, Kittler J (2003) Locally optimized RANSAC. In: Michaelis B, Krell G (eds) 25th DAGM symposium. Lecture notes in computer science (LNCS), vol 2781. Springer, Magdeburg, pp 236–243

    Google Scholar 

  35. Chum O, Matas J (2008) Optimal randomized RANSAC. PAMI 30(8):1472–1482

    Article  Google Scholar 

  36. Goshen L, Shimshoni H (2008) Balanced exploration and exploitation model search for efficient epipolar geometry estimation. PAMI 30(7):1230–1242

    Article  Google Scholar 

  37. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. PAMI 24(5):603–619

    Article  Google Scholar 

  38. Wang H, Suter D (2004) Robust adaptive-scale parametric model estimation for computer vision. IEEE Trans PAMI 26(11):1459–1474

    Article  Google Scholar 

  39. Hoseinnezhad R, Bab-Hadiashar A (2007) Consistency of robust estimators in multi-structural visual data segmentation. Pattern Recogn 40:3677–3690

    Article  MATH  Google Scholar 

  40. Hoseinnezhad R, Bab-Hadiashar A, Suter D (2010) Finite sample bias of robust estimators in segmentation of closely spaced structures: a comparative study. J Math Imaging Vis 37(1):66–84

    Article  MathSciNet  Google Scholar 

  41. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. IJCV 60(2):91–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Hoseinnezhad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoseinnezhad, R., Bab-Hadiashar, A. (2014). Parametric Segmentation of Nonlinear Structures in Visual Data: An Accelerated Sampling Approach. In: Jazar, R., Dai, L. (eds) Nonlinear Approaches in Engineering Applications 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6877-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6877-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6876-9

  • Online ISBN: 978-1-4614-6877-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics