Skip to main content
Log in

Receptor-mediated supra-additive activation of guinea pig superior cervical ganglion adenylate cyclase: Role of Mn2+ ions and calmodulin

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of Mn2+ and calmodulin were studied on the basal and agonist-modulated adenylate cyclase activity of the guinea pig superior cervical ganglion. The divalent cation strongly stimulates the basal and agonist-modulated enzyme in a concentration-dependent manner. Moreover, in the presence of Mn2+ the inhibitory effects of “high” GTP concentrations and of D-Ala2-Met-enkephalinamide on adenylate cyclase are eliminated, while the stimulation exerted by prostaglandin E2 and the supra-additive activation of the enzyme by the combination of the two drugs are unaffected. In EGTA-washed, calmodulin-depleted membrane preparations, Mn2+ still activates the cyclase but the enkephalin inhibition and the superactivation of the enzyme induced by the combination of opiate and prostaglandin are lost, both in the absence and in the presence of the cation. Reconstituting the depleted membranes with exogenous Ca2+/calmodulin fully restored the enzyme responsivity to the combination and, partially, to the enkephalin. The findings suggest the existence in the guinea pig superior cervical ganglion of both the calmodulin-sensitive and differently regulated calmodulin-insensitive adenylate cyclase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birnbaumer, L., Abramowitz, J. and Brown, A. M. 1990. Receptor-effector coupling by G proteins. Biochim. Biophys. Acta 1031:163–224.

    PubMed  Google Scholar 

  2. Cooper, D. M. F., Ahlijanian, M. K., and Perez-Reyes, E. 1988. Calmodulin plays a dominant role in determining neurotransmitter regulation of neuronal adenylate cyclase. J. Cell. Biochem. 36:417–427.

    PubMed  Google Scholar 

  3. Hollenberg, M. D. 1987. Receptor regulation and receptor-receptor communication. Pages 546–554,in Fuxe, K. and Agnati, L. F. (eds.), Receptor-Receptor Interactions, Vol. 48. The Macmillan Press Ltd, London.

    Google Scholar 

  4. Borasio, P. G., Biondi, C., Capuzzo, A., Ferretti, M. E., and Trevisani, A. 1984. Modulation of synaptic transmission in mammalian sympathetic ganglia: effects of catecholamines, prostaglandins and cyclic nucleotides. Boll. Soc. It. Biol. Sper. 60:77–83.

    Google Scholar 

  5. Ferretti, M. E., Borasio, P. G., Biondi, C., Capuzzo, A., Fabbri, E., and Pareschi, M. C. 1988. Interactions between prostaglandin E2 and D-Ala2-Met-enkephalinamide on adenylate cyclase activity in the guinea-pig superior cervical ganglion. Neurochem. Res. 13:797–802.

    PubMed  Google Scholar 

  6. Borasio, P. G., Biondi, C., Capuzzo, A., and Ferretti, M. E. 1986. Opiates modulation of cAMP levels and PGE2 binding in mammalian sympathetic ganglia. Neurosci. Lett. 66:7–12.

    PubMed  Google Scholar 

  7. Capuzzo, A., Borasio, P. G., and Fabbri, E. 1988. Effects of oxotremorine and RMI 12330A on [3H]Acetylcholine release and adenylate cyclase activity in guinea-pig superior cervical ganglion. Neurochem. Res. 13:1049–1053.

    PubMed  Google Scholar 

  8. Borasio, P. G., Biondi, C., Ferretti, M. E., Fabbri, E., and Pareschi, M. C. 1989. Supra-additive stimulation of adenylate cyclase activity by prostaglandin E2 and D-Ala2-Met-enkephalinamide in the guinea-pig superior cervical ganglion: role of Mg2+ ions. Neurochem. Res. 14:1181–1186.

    PubMed  Google Scholar 

  9. Biondi, C., Borasio, P. G., Ferretti, M. E., and Pareschi, M. C. 1990. Supra-additive activation of guinea-pig superior cervical ganglion adenylate cyclase by PGE2 and D-Ala2-Met-enkephalinamide: role of GTP. Neurochem. Res. 15:791–795.

    PubMed  Google Scholar 

  10. Bender, J. L., and Neer, E. J. 1983. Properties of the adenylate cyclase catalytic unit from caudate nucleus. J. Biol. Chem. 258:2432–2439.

    PubMed  Google Scholar 

  11. Minocherhomjee, A. M., Selfe, S., Flowers, N. J., and Storm, D. R. 1987. Direct interaction between the catalytic subunit of the calmodulin-sensitive adenylate cyclase from bovine brain with125I-labelled wheat germ agglutinin and125I-labelled calmodulin. Biochemistry 26:4444–4448.

    PubMed  Google Scholar 

  12. Abramowitz, J., and Campbell, A. R. 1984. Effects of guanine nucleotides and divalent cations on forskolin activation of rabbit luteal adenylyl cyclase: evidence for the existence of an inhibitory guanine nucleotide-binding regulatory component. Endocrinology 114:1955–1962.

    PubMed  Google Scholar 

  13. Schimmer, B. P., Tsao, J., Borenstein, R., and Endrenyi, L. 1987. Forskolin-resistant Y1 mutants Harbor defects associated with the guanyl nucleotide-binding regulatory protein Gs. J. Biol. Chem. 262:15521–15526.

    PubMed  Google Scholar 

  14. Treisman, G. J., Bagley, S., and Gnegy, M. E. 1983. Calmodulin-sensitive and calmodulin-insensitive components of adenylate cyclase activity in rat striatum have differential responsiveness to guanyl nucleotides. J. Neurochem. 41:1398–1406.

    PubMed  Google Scholar 

  15. Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L., and Greengard, P. 1974. Characterization of a dopamine-sensitive adenyl cyclase in rat caudate nucleus. J. Neurochem. 25:143–149.

    Google Scholar 

  16. Brown, B. L., Ekins, R. P., and Albano, J. D. M. 1972. Saturation assay for cyclic AMP using endogenous binding protein. Pages 25–40,in Greengard, P., Robinson, G., and Paoletti, R. (eds.), Adv. Cyclic Nucleotide Res., Vol. 2, Raven Press, New York.

    Google Scholar 

  17. Tomasi, V., Biondi, C., Trevisani, A., Martini, M., and Perri, V. 1977. Modulation of cyclic AMP levels in the bovine superior cervical ganglion by prostaglandin E1 and dopamine. J. Neurochem. 28:1289–1297.

    PubMed  Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  19. Steinberg, S. F., Chow, Y. K., and Bilezikian, J. P. 1986. Regulation of rat heart membrane adenylate cyclase by magnesium and manganese. J. Pharmacol. Exp. Ther. 237:764–772.

    PubMed  Google Scholar 

  20. Cooper, D. M. F., Schlegel, W., Lin, M. C., and Rodbell, M. 1979. The fat cell adenylate cyclase system. J. Biol. Chem. 254:8927–8931.

    PubMed  Google Scholar 

  21. Law, P. Y., Wu, J., Koehler, J. E., and Loh, H. H. 1981. Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase. J. Neurochem. 36:1834–1846.

    PubMed  Google Scholar 

  22. Hoffmann, B. B., Yim, S., Tsai, B. S., and Lefkowitz, R. J. 1981. Preferential uncoupling by manganese of alpha adrenergic receptor mediated inhibition of adenylate cyclase in human platelets. Biochem. Biophys. Res. Commun. 100:724–731.

    PubMed  Google Scholar 

  23. Limbird, L. E., Hickey, A. R., and Lefkowitz, R. J. 1979. Unique uncoupling of the frog erythrocyte adenylate cyclase system by manganese. J. Biol. Chem. 254:2677–2683.

    PubMed  Google Scholar 

  24. Manalan, A. S., and Klee, C. B. 1984. Calmodulin. Pages 227–278.in Greengard, P., and Robison, G. A. (eds.), Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Vol. 18, Raven Press, New York.

    Google Scholar 

  25. Meller, V. H., Combest, W. L., Smith, W. A., and Gilbert, L. I. 1988. A calmodulin-sensitive adenylate cyclase in the prothoracic giands of the tobacco hornworm,Manduca Sexta. Mol. Cell. Endocrinol. 59:67–76.

    PubMed  Google Scholar 

  26. Katada, T., Kusakabe, K., Oinuma, M., and Ui, M. 1987. A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP-binding proteins. J. Biol. Chem. 262:11897–11900.

    PubMed  Google Scholar 

  27. Girardot, J. M., Kempf, J., and Cooper, D. M. F. 1983. Role of calmodulin in the effect of guanyl nucleotides on rat hippocampal adenylate cyclase: involvement of adenosine and opiates. J. Neurochem. 41:848–859.

    PubMed  Google Scholar 

  28. Perez-Reyes, E., and Cooper, D. M. F. 1987. Calmodulin stimulation of the rat cerebral cortical adenylate cyclase is required for the detection of guanine nucleotide- or hormone-mediated inhibition. Mol. Pharmacol. 32:212–216.

    PubMed  Google Scholar 

  29. Harrison, J. K., Mickevicius, C. K., and Gnegy, M. E. 1988. Differential regulation by calmodulin of basal, GTP-, and dopamine-stimulated adenylate cyclase activities in bovine striatum. J. Neurochem. 51:345–352.

    PubMed  Google Scholar 

  30. Ahlijanian, M. K., and Cooper, D. M. F. 1987. Calmodulin may play a pivotal role in neurotransmitter-mediated inhibition and stimulation of rat cerebellar adenylate cyclase. Mol. Pharmacol. 32:127–132.

    PubMed  Google Scholar 

  31. Ahlijanian, M. K., Halford, M. K., and Cooper, D. M. F. 1987. Ca2+-calmodulin distinguishes between guanyl-5′-yl-imidodi-phosphate-and opiate-mediated inhibition of rat striatal adenylate cyclase. J. Neurochem. 49:1308–1315.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferretti, M.E., Borasio, P.G., Biondi, C. et al. Receptor-mediated supra-additive activation of guinea pig superior cervical ganglion adenylate cyclase: Role of Mn2+ ions and calmodulin. Neurochem Res 16, 583–589 (1991). https://doi.org/10.1007/BF00974878

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00974878

Key Words

Navigation