Skip to main content

Multiple Mechanisms Contribute to the PAC1 Modulation of Parasympathetic Cardiac Neuron Excitability

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent intercellular signaling molecule that regulates a variety of central and peripheral neuronal circuits important for behavior and physiological homeostasis. Although central neurons are not readily accessible for mechanistic studies, the ability for PACAP/PAC1 receptor signaling to increase neuronal excitability in guinea pig parasympathetic cardiac ganglia provides a unique means to establish intracellular PACAP mechanisms in neuronal function. The guinea pig cardiac neurons predominantly express a very short null PAC1 receptor isoform which is coupled to the adenylyl cyclase and MEK/ERK signaling cascades. PACAP/PAC1 receptor activation of adenylyl cyclase and the resulting rise in intracellular cAMP enhances the nonselective cationic current I h; treatment with I h inhibitors diminishes the PACAP-induced increase in excitability. Thus, a shift in the voltage-dependence of I h activation is one ionic mechanism contributing to the PACAP-induced increase in cardiac neuron excitability. Low concentrations of nickel also blunt the peptide-induced increase in excitability, suggesting that a PACAP enhanced calcium influx through T-type voltage-dependent calcium channels contributes to the modulation of excitability. Reducing ambient temperature and treatments with endocytosis inhibitors Pitstop2 or dynasore efficaciously block PACAP modulation of excitability suggesting PACAP/PAC1 receptor internalization for endosomal MEK/ERK activation is requisite for the PACAP responses. In sum, the results presented in this review demonstrate that the PACAP/PAC1 receptor interactions can activate multiple intracellular signaling cascades to selectively modulate ionic conductances that gate neuronal excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arimura A. Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol. 1998;48:301–31.

    Article  CAS  PubMed  Google Scholar 

  2. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  3. Cho J-H, Zushida K, Shumyatsky GP, Carlezon WA, Meloni EG, Bolshakov VY. Pituitary adenylate cyclase-activating polypeptide induces postsynaptically expressed potentiation in the intra-amygdala circuit. J Neurosci. 2012;32:14165–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hammack SE, Chung J, Rhoades KM, Schutz KC, Falls WA, Braas KM, et al. Chronic stress increases pituitary adenylate cyclase-activating polypeptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis(BNST); roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology. 2009;34:833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry. 2014;S0006-3223:00962-7.

    Google Scholar 

  6. Hill J, Chan S-A, Kuri B, Smith C. Pituitary adenylate cyclase-activating peptide (PACAP) recruits low voltage-activated T-type calcium influx under acute sympathetic stimulation in mouse adrenal chromaffin cells. J Biol Chem. 2011;286:42459–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Legradi G, Das M, Giunta B, Hirani K, Mitchell EA, Diamond DM. Microinfusion of pituitary adenylate cyclase-activating polypeptide into the central nucleus of amygdale of the rat produces a shift from an active to passive mode of coping in the shock-probe fear/defensive burying test. Neural Plast. 2007;2007:79102.

    PubMed  PubMed Central  Google Scholar 

  8. Ressler KJ, Mercer KB, Bradley B, Javovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stroth N, Kuri BA, Mustafa T, Chan SA, Smith CB, Eiden LE. PACAP controls adrenomedullary catecholamine secretion and expression of catecholamine biosynthetic enzymes at high splanchnic nerve firing rates characteristic of stress transduction in male mice. Endocrinology. 2013;154:330–9.

    Article  CAS  PubMed  Google Scholar 

  10. Braas KM, May V. Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC1 receptor isoform activation of specific intracellular signaling pathways. J Biol Chem. 1999;274:27702–10.

    Article  CAS  PubMed  Google Scholar 

  11. Harmar T, Lutz E. Multiple receptors for PACAP and VIP. Trends Pharmacol Sci. 1994;15:97–9.

    Article  CAS  PubMed  Google Scholar 

  12. Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, et al. Differential signal transduction by five splice variants of the PACAP receptor. Nature. 1993;365:170–5.

    Article  CAS  PubMed  Google Scholar 

  13. Ishizuka Y, Kashimoto K, Mochizuki T, Sato K, Ohshima K, Yanihara N. Cardiovascular and respiratory actions of pituitary adenylate cyclase activating polypeptides. Regul Pept. 1992;40:29–39.

    Article  CAS  PubMed  Google Scholar 

  14. Hirose M, Furukawa Y, Nagashima Y, Yamazaki K, Hoyano Y, Chiba S. Effects of PACAP-38 on the SA nodal pacemaker activity in autonomically decentralized hearts of anesthetized dogs. J Cardiovasc Pharmacol. 1997;29:216–21.

    Article  CAS  PubMed  Google Scholar 

  15. Hirose M, Furukawa Y, Nagashima Y, Lakhe M, Chiba S. Pituitary adenylate cyclase-activating polypeptide-27 causes a biphasic chronotropic effect and atrial fibrillation in autonomically decentralized, anesthetized dogs. J Pharmavol Exp Ther. 1997;283:478–87.

    CAS  Google Scholar 

  16. Hirose M, Furukawa Y, Lakhe M, Chiba SJ. Regional differences in cardiac effects of pituitary adenylate cyclase-activating polypeptide-27 in the isolated dog heart. Eur J Pharmacol. 1998;349:269–76.

    Article  CAS  PubMed  Google Scholar 

  17. Yonezawa T, Furukawa Y, Lakhe M, Nagashima Y, Hirose M, Chiba S. PACAP-38 activates parasympathetic nerves in isolated, blood-perfused dog atria. Eur J Pharmacol. 1996;315:289–96.

    Article  CAS  PubMed  Google Scholar 

  18. Chang Y, Lawson LJ, Hancock JC, Hoover DB. Pituitary adenylate cyclase-activating polypeptide localization and differential influence on isolated hearts from rats and guinea pigs. Regul Pept. 2005;129:139–46.

    Article  CAS  PubMed  Google Scholar 

  19. Hoover DB, Tompkins JD, Parsons RL. Differential activation of guinea pig intrinsic cardiac neurons by the PAC1 agonists maxadilan and pituitary adenylate cyclase-activating polypeptide 27 (PACAP27). J Pharmacol Exp Ther. 2009;331:197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chik CL, Li B, Ogiwara T, Ho AK, Karpinski E. PACAP modulates L-type Ca2+ channel currents in vascular smooth muscle cells: involvement of PKC and PKA. FASEB J. 1996;10:1310–7.

    CAS  PubMed  Google Scholar 

  21. Seebeck J, Schmidt WE, Kilbinger H, Neumann J, Zimmermann N, Herzig S. PACAP induces bradycardia in guinea-pig heart by stimulation of atrial cholinergic neurons. Arch Pharmacol. 1996;354:424–30.

    Article  CAS  Google Scholar 

  22. Braas KM, May V, Harakall SA, Hardwick JC, Parsons RL. Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. J Neurosci. 1998;18:9766–79.

    CAS  PubMed  Google Scholar 

  23. Hoover DB, Girard BM, Hoover JL, Parsons RL. PAC1 receptors mediate positive chronotrophic responses to PACAP-27 and VIP in isolated mouse atria. Eur J Pharmacol. 2013;713:25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoover DB. Effects of guinea pig vasoactive intestinal peptide on the isolated perfused guinea pig heart. Peptides. 1989;10:343–7.

    Article  CAS  PubMed  Google Scholar 

  25. Calupca MA, Vizzard MA, Parsons RL. Origin of pituitary adenylate cyclase-activating polypeptide (PACAP)- immunoreactive fibers innervating guinea pig parasympathetic cardiac ganglia. J Comp Neurol. 2000;423:26–39.

    Article  CAS  PubMed  Google Scholar 

  26. Tompkins JD, Ardell JL, Hoover DB, Parsons RL. Neurally released pituitary adenylate cyclase-activating polypeptide enhances guinea pig intrinsic cardiac neurone excitability. J Physiol. 2007;582:87–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Merriam LA, Baran CN, Girard BM, Hardwick JC, May V, Parsons RL. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability. J Neurosci. 2013;33:4614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Braas KM, Rossignol TM, Girard BM, May V, Parsons RL. Pituitary adenylate cyclase activating polypeptide (PACAP) decreases neuronal somatostatin immunoreactivity in cultured guinea-pig parasympathetic cardiac ganglia. Neuroscience. 2004;126:335–46.

    Article  CAS  PubMed  Google Scholar 

  29. Tompkins JD, Hardwick JC, Locknar SA, Merriam LA, Parsons RL. Ca2+ influx, but not Ca2+ release from internal stores, is required for the PACAP-induced increase in excitability in guinea pig intracardiac neurons. J Neurophysiol. 2006;95:2134–42.

    Article  CAS  PubMed  Google Scholar 

  30. Tompkins JD, Parsons RL. Identification of intracellular signaling cascades mediating the PACAP-induced increase in guinea pig cardiac neuron excitability. J Mol Neurosci. 2008;36:292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edwards FR, Hirst GDS, Klemm MF, Steele PA. Different types of ganglion cell in the cardiac plexus of guinea pigs. J Physiol. 1995;486:453–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xi-Moy SX, Dun NJ. Potassium currents in adult rat intracardiac neurones. J Physiol. 1995;486:15–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cuevas J, Harper AA, Trequattrini C, Adams DJ. Passive and active membrane properties of isolated rat intracardiac neurons: regulation by H- and M-currents. J Neurophysiol. 1997;78:1890–902.

    CAS  PubMed  Google Scholar 

  34. Merriam LA, Barstow KL, Parsons RL. Pituitary adenylate cyclase-activating polypeptide enhances the hyperpolarization-activated nonselective cationic conductance, I h, in dissociated guinea pig intracardiac neurons. Regul Pept. 2004;123:123–33.

    Article  CAS  PubMed  Google Scholar 

  35. Robinson RB, Sigelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol. 2003;65:453–80.

    Article  CAS  PubMed  Google Scholar 

  36. Tompkins JD, Lawrence YT, Parsons RL. Enhancement of I h, but not inhibition of I M, is a key mechanism underlying the PACAP-induced increase in excitability of guinea pig intrinsic cardiac neurons. Am J Physiol Regul Integr Comp Physiol. 2009;297:R52–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Merriam LA, Roman CW, Baran CN, Girard BM, May V, Parsons RL. Pretreatment with nonselective cationic channel inhibitors blunts the PACAP-induced increase in guinea pig cardiac neuron excitability. J Mol Neurosci. 2012;48:721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeong S-W, Wurster RD. Calcium channel currents in acutely dissociated intracardiac neurons from adult rats. J Neurophysiol. 1997;77:1769–78.

    CAS  PubMed  Google Scholar 

  39. Bhattacharya A, Lakhman SS, Singh S. Modulation of L-type calcium channels in Drosophila via a pituitary adenylyl cyclise activating polypeptide (PACAP) -mediated pathway. J Biol Chem. 2004;279:37291–7.

    Article  CAS  PubMed  Google Scholar 

  40. Dziema H, Obrietan K. PACAP potentiates L-type calcium channel conductance in suprachiasmatic nucleus neurons by activating the MAPK pathway. J Neurophysiol. 2002;88:1374–86.

    CAS  PubMed  Google Scholar 

  41. Iftinca MC, Zamponi GW. Regulation of neuronal T-type calcium channels. Trends Pharmacol Sci. 2009;30:32–40.

    Article  CAS  PubMed  Google Scholar 

  42. Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science. 1993;260:1133–6.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J-F, Randall AD, Ellinor PT, Horne WA, Sather WA, Tanabe T, et al. Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology. 1993;32:1075–88.

    Article  CAS  PubMed  Google Scholar 

  44. Tompkins JD, Merriam LA, Girard BM, May V, Parsons RL. Nickel suppresses the PACAP-induced increase in guinea pig cardiac neuron excitability. Am J Physiol Cell Physiol. 2015:ajpcell.00403.2014.

    Google Scholar 

  45. Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: Structure, function and dysfunction. Neuron. 2014;82:24–45.

    Article  CAS  PubMed  Google Scholar 

  46. Talavera K, Nilius B. Biophysics and structure-function relationships of T-type Ca2+ channels. Cell Calcium. 2006;40:97–114.

    Article  CAS  PubMed  Google Scholar 

  47. Lacinova L. T-type calcium channel blockers-new and notable. Gen Physiol Biophys. 2011;30:403–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lee J-H, Gomora JC, Cribbs LL, Perez-Reyes E. Nickel block of three cloned T-type calcium channels: low concentrations selectively block α1H. Biophys J. 1999;77:3034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. May V, Buttolph TR, Girard BM, Clason TA, Parsons RL. PACAP-induced ERK activation in HEK cells expressing PAC1 receptors involves both receptor internalization and PKC signaling. Am J Physiol Cell Physiol. 2014;306:C1068–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Sandra Bossick for her assistance in preparation of this chapter for publication. Studies from the Parsons’ laboratory described in this chapter were supported in part by NIH grants NS 23978, HL 65481, P20 RR16435, and P30 GM103498/P30 RR032135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney L. Parsons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parsons, R.L., Tompkins, J.D., Hardwick, J.C., Merriam, L.A., Girard, B.M., May, V. (2016). Multiple Mechanisms Contribute to the PAC1 Modulation of Parasympathetic Cardiac Neuron Excitability. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_13

Download citation

Publish with us

Policies and ethics