Skip to main content
Log in

Subcellular localization of acetycholinesterase molecular forms in endplate regions of adult mammalian skeletal muscle

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The characterization of individual acetylcholinesterase (AChE) molecular form subcellular pools in adult mammalian skeletal muscle is a critical point when considering such questions as the origin, assembly, and neurotrophic regulation of these molecules. By correlating the results of differential extraction, in vitro collagenase digestion, and in situ pharmacologic probes of AChE molecular forms in endplate regions of adult rat anterior gracilis muscle, we have shown that: 1) 4.0S (G1) and 6.0S (G2) AChE are predominantly membrane-bound and intracellular; if an extracellular and/or soluble fraction of these forms exists, it cannot be adequately resolved by our methods; 2) 9–11S (globular) AChE activity is distributed between internal and external pools, as well as membrane-associated and soluble fractions; 3) 16.0S (A12) AChE is not an integral membrane protein and exists both intracellularly (25–30%) and extracellularly (70–75%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bon, J., Vigny, M., andMassoulié, J. 1979. Asymmetric and globular forms of acetylcholinesterase in mammals and birds. Proc. Natl. Acad. Sci. (USA) 76:2546–2550.

    Google Scholar 

  2. Koenig, J., andVigny, M. 1978. Neural induction of the 16S acetylcholinesterase in muscle cell cultures. Nature 271:75–77.

    Google Scholar 

  3. Fernandez, H. L., Patterson, M. R., andDuell, M. J. 1980. Neurotrophic control of 16S acetylcholinesterase from mammalian skeletal muscle in organ culture. J. Neurobiol. 11:557–570.

    Google Scholar 

  4. Kefalides, N. A., Alper, R., andClark, C. C. 1979. Biochemistry and metabolism of basement membranes Int. Rev. Cytol. 61:167–228.

    Google Scholar 

  5. Massoulié, J., Bon, S., andVigny, M. 1980. The polymorphism of cholinesterases in vertebrates. Neurochem. Intl. 2:161–184.

    Google Scholar 

  6. Dauber, W. 1982. Acetylcholinesterase of the motor endplate and its response to muscle denervation. Biophys. Struct. Mech. 9:117–124.

    Google Scholar 

  7. Grubić, Z., Sketelj, J., Klinar, B., andBrzin, M. 1981. Recovery of acetylcholinesterase in the diaphragm, brain, and plasma of the rat after irreversible inhibition by soman: A study of cytochemical localization and molecular forms of the enzyme in motor endplates. J. Neurochem. 37:909–916.

    Google Scholar 

  8. Younkin, S. G., Rosenstein, C., Collins, P. L., andRosenberry, T. L. 1982. Cellular localization of the molecular forms of acetylcholinesterase in rat diaphragg. J. Biol. Chem. 257:13630–13637.

    Google Scholar 

  9. Inestrosa, N. C., Reiness, C. G., Reichard, T., andHall, Z. W. 1981. Cellular localization of the molecular forms of acetylcholinesterase in rat pheochromocytoma PC12 cells treated with nerve growth factor. J. Neurosci. 1:1260–1267.

    Google Scholar 

  10. Inestrosa, N. C., Silberstein, L., andHall, Z. W. 1982. Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Cell 29:71–79.

    Google Scholar 

  11. McIsaac, R. J., andKoelle, G. B. 1959. Comparison of the effects of inhibition of external, internal, and total acetylcholinesterase upon ganglionic transmission. J. Pharmacol. Exp. Ther. 126:9–20.

    Google Scholar 

  12. Koelle, G. B., andSteiner, E. C. 1965. The cerebral distributions of a tertiary and quaternary anticholinesterase agent following intravenous and interventricular injection. J. Pharmacol. Exp. Ther. 118:420–434.

    Google Scholar 

  13. Brimijoin, S., Skau, K., andWiermaa, M. J. 1978. On the origin and fate of external acetylcholinesterase in peripheral nerve. J. Physiol. 285:143–158.

    Google Scholar 

  14. Brimijoin, S. 1979. Axonal transport and subcellular distribution of molecular forms of acetylcholinesterase in rabbit sciatic nerve. Mol. Pharmacol. 15:641–648.

    Google Scholar 

  15. Brockman, S. K., Przybylski, R. J., andYounkin, S. G. 1982. Cellular localization of the molecular forms of acetylcholinesterase in cultured embryonic rat myotubes. J. Neurosci. 2:1775–1785.

    Google Scholar 

  16. Rotundo, R. L., andFambrough, D. M. 1980. Synthesis, transport, and fate of acetylcholinesterase in cultured chick embryo muscle cells. Cell 22:583–594.

    Google Scholar 

  17. Taylor, P. B., Rieger, F., Shelanski, M., andGreen, L. A. 1981. Cellular localization of multiple molecular forms of acetylcholinesterase in cultured neuronal cells. J. Biol. Chem. 256:3827–3830.

    Google Scholar 

  18. Stiles, J. R., andFernandez, H. L. 1982. Subcellular localization of 16S acetylcholinesterase in motor endplates. Trans. Amer. Soc. Neurochem. 13:122.

    Google Scholar 

  19. Fernandez, H. L. 1982. Origin and regulation of junctional acetylcholinesterase. Neurosci. Lett., Suppl. 10:S-8.

    Google Scholar 

  20. Fernandez, H. L., Duell, M. J., andFestoff, B. W. 1979. Neurotrophic control of 16S acetylcholinesterase at the vertebrate neuromuscular junction. J. Neurobiol. 10:441–454.

    Google Scholar 

  21. Inestrosa, N. C., Ramirez, B. U., andFernandez, H. L. 1977. Effects of denervation and of axoplasmic transport blockage on the in vitro release of muscle endplate acetylcholinesterase. J. Neurochem. 28:941–945.

    Google Scholar 

  22. Fernandez, H. L., andDuell, M. J. 1980. Protease inhibitors reduce effects of denervation on muscle endplate acetylcholinesterase. J. Neurochem. 35:1166–1171.

    Google Scholar 

  23. Fernandez, H. L. 1981. Properties of 16S acetylcholinesterase from rat motor nerve and skeletal muscle. Neurochem. Res. 6:1005–1017.

    Google Scholar 

  24. Gomez-Barriocanal, J., Barat, A., Escudero, E., Rodriguez-Borrajo, C., andRamirez, G. 1981. Solubilization of collagen-tailed acetylcholinesterase from chick retina: Effect of different extraction procedures. J. Neurochem. 37:1239–1249.

    Google Scholar 

  25. Allington, R. W., Brakke, M. K., Nelson, J. W., Aron, C. G., andLarkins, B. A. 1976. Optimum conditions for high resolution gradient analysis. Ann. Biochem. 73:78–92.

    Google Scholar 

  26. Brakke, M. K. 1951. Density gradient centrifugation: A new separation technique. J. Amer. Chem. Soc. 73:1847.

    Google Scholar 

  27. Grassi, J., Vigny, M., andMassoulié, J. 1982. Molecular forms of acetylcholinesterase in bovine caudate nucleus and superior cervical ganglion: Solubility properties and hydrophobic character. J. Neurochem. 38:457–469.

    Google Scholar 

  28. Lazar, M., andVigny, M. 1980. Modulation of the distribution of acetylcholinesterase molecular forms in a murine neuroblastoma x sympathetic ganglion cell hybrid cell line. J. Neurochem. 35:1067–1079.

    Google Scholar 

  29. Betz, W., andSakmann, B. 1971. Disjunction of frog neuromuscular synapses by treatment with proteolytic enzymes. Nature New Biol. 232:94–95.

    Google Scholar 

  30. Massoulié, J. 1980. The polymorphism of cholinesterases and its physiological significance. Trend Biochem. Sci. 5:160–164.

    Google Scholar 

  31. Hall, Z. W., andKelly, R. B. 1971. Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature New Biol. 232:62.

    Google Scholar 

  32. McMahan, V. J., Sanes, J. R., andMarshall, L. M. 1978. Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 271:172–174.

    Google Scholar 

  33. Fernandez, H. L., andStiles, J. R. 1984. Denervation induced changes in subcellular pools of 16S acetylcholinesterase activity from adult mammalian skeletal muscle. Neurosci. Lett. 44:187–192.

    Google Scholar 

  34. Fernandez, H. L., andStiles, J. R. 1984. Intra-versus extracellular recovery of 16S acetylcholinesterase following organophosphate inactivation. Neurosci. Lett. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, H.L., Inestrosa, N.C. & Stiles, J.R. Subcellular localization of acetycholinesterase molecular forms in endplate regions of adult mammalian skeletal muscle. Neurochem Res 9, 1211–1230 (1984). https://doi.org/10.1007/BF00973035

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973035

Keywords

Navigation