Skip to main content

Advertisement

Log in

Duchenne muscular dystrophy: pathogenesis and promising therapies

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy (DMD) is a severe, progressive, muscle-wasting disease, characterized by progressive deterioration of skeletal muscle that causes rapid loss of mobility. The failure in respiratory and cardiac muscles is the underlying cause of premature death in most patients with DMD. Mutations in the gene encoding dystrophin result in dystrophin deficiency, which is the underlying pathogenesis of DMD. Dystrophin-deficient myocytes are dysfunctional and vulnerable to injury, triggering a series of subsequent pathological changes. In this review, we detail the molecular mechanism of DMD, dystrophin deficiency-induced muscle cell damage (oxidative stress injury, dysregulated calcium homeostasis, and sarcolemma instability) and other cell damage and dysfunction (neuromuscular junction impairment and abnormal differentiation of muscle satellite). We also describe aberrant function of other cells and impaired muscle regeneration due to deterioration of the muscle microenvironment, and dystrophin deficiency-induced multiple organ dysfunction, while summarizing the recent advances in the treatment of DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Huang L, Li M, Deng C, Qiu J, Wang K, Chang M, Zhou S, Gu Y, Shen Y, Wang W et al (2022) Potential therapeutic strategies for skeletal muscle atrophy. Antioxidants (Basel) 12(1):44

    Article  PubMed  Google Scholar 

  2. Wang W, Li M, Chen Z, Xu L, Chang M, Wang K, Deng C, Gu Y, Zhou S, Shen Y et al (2022) Biogenesis and function of extracellular vesicles in pathophysiological processes of skeletal muscle atrophy. Biochem Pharmacol 198:114954

    Article  CAS  PubMed  Google Scholar 

  3. Amenta AR, Yilmaz A, Bogdanovich S, McKechnie BA, Abedi M, Khurana TS, Fallon JR (2011) Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc Natl Acad Sci USA 108(2):762–767

    Article  CAS  PubMed  Google Scholar 

  4. Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJ, Kunkel LM (2015) The pathogenesis and therapy of muscular dystrophies. Annu Rev Genom Hum Genet 16:281–308

    Article  CAS  Google Scholar 

  5. Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A (2021) Duchenne muscular dystrophy. Nat Rev Dis Primers 7(1):13

    Article  PubMed  Google Scholar 

  6. Zablocka B, Gorecki DC, Zablocki K (2021) Disrupted calcium homeostasis in duchenne muscular dystrophy: a common mechanism behind diverse consequences. Int J Mol Sci 22(20):11040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao QQ, McNally EM (2015) The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 5(3):1223–1239

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL et al (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Investig 119(3):624–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allen DG, Whitehead NP, Froehner SC (2016) Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 96(1):253–305

    Article  CAS  PubMed  Google Scholar 

  10. Patel A, Zhao J, Yue Y, Zhang K, Duan D, Lai Y (2018) Dystrophin R16/17-syntrophin PDZ fusion protein restores sarcolemmal nNOSμ. Skelet Muscle 8(1):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82(5):743–752

    Article  CAS  PubMed  Google Scholar 

  12. Sander M, Chavoshan B, Harris SA, Iannaccone ST, Stull JT, Thomas GD, Victor RG (2000) Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci USA 97(25):13818–13823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kodippili K, Hakim CH, Pan X, Yang HT, Yue Y, Zhang Y, Shin JH, Yang NN, Duan D (2018) Dual AAV gene therapy for duchenne muscular dystrophy with a 7-kb Mini-Dystrophin Gene in the canine model. Hum Gene Ther 29(3):299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prosser BL, Ward CW, Lederer WJ (2011) X-ROS signaling: rapid mechano-chemo transduction in heart. Science (New York, NY) 333(6048):1440–1445

    Article  CAS  Google Scholar 

  15. Khairallah RJ, Shi G, Sbrana F, Prosser BL, Borroto C, Mazaitis MJ, Hoffman EP, Mahurkar A, Sachs F, Sun Y et al (2012) Microtubules underlie dysfunction in duchenne muscular dystrophy. Sci Signal 5(236):ra56

    Article  PubMed  Google Scholar 

  16. Pal R, Palmieri M, Loehr JA, Li S, Abo-Zahrah R, Monroe TO, Thakur PB, Sardiello M, Rodney GG (2014) Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy. Nat Commun 5:4425

    Article  CAS  PubMed  Google Scholar 

  17. Gissel H (2005) The role of Ca2+ in muscle cell damage. Ann N Y Acad Sci 1066:166–180

    Article  CAS  PubMed  Google Scholar 

  18. Santulli G, Xie W, Reiken SR, Marks AR (2015) Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci USA 112(36):11389–11394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rudolf R, Mongillo M, Magalhães PJ, Pozzan T (2004) In vivo monitoring of Ca(2+) uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166(4):527–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ng SY, Ljubicic V (2020) Recent insights into neuromuscular junction biology in Duchenne muscular dystrophy: impacts, challenges, and opportunities. EBioMedicine 61:103032

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li L, Xiong WC, Mei L (2018) Neuromuscular junction formation, aging, and disorders. Annu Rev Physiol 80:159–188

    Article  CAS  PubMed  Google Scholar 

  23. Wood SJ, Slater CR (2001) Safety factor at the neuromuscular junction. Prog Neurobiol 64(4):393–429

    Article  CAS  PubMed  Google Scholar 

  24. Suntar I, Sureda A, Belwal T, Sanches Silva A, Vacca RA, Tewari D, Sobarzo-Sánchez E, Nabavi SF, Shirooie S, Dehpour AR et al (2020) Natural products, PGC-1 α, and Duchenne muscular dystrophy. Acta Pharm Sin B 10(5):734–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Angus LM, Chakkalakal JV, Méjat A, Eibl JK, Bélanger G, Megeney LA, Chin ER, Schaeffer L, Michel RN, Jasmin BJ (2005) Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1{alpha}, drives utrophin gene expression at the neuromuscular junction. Am J Physiol Cell Physiol 289(4):C908-917

    Article  CAS  PubMed  Google Scholar 

  26. Paredes-Redondo A, Harley P, Maniati E, Ryan D, Louzada S, Meng J, Kowala A, Fu B, Yang F, Liu P et al (2021) Optogenetic modeling of human neuromuscular circuits in Duchenne muscular dystrophy with CRISPR and pharmacological corrections. Sci Adv 7(37):eabi8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pratt SJP, Shah SB, Ward CW, Kerr JP, Stains JP, Lovering RM (2015) Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cell Mol Life Sci CMLS 72(1):153–164

    Article  CAS  PubMed  Google Scholar 

  28. Hesser BA, Henschel O, Witzemann V (2006) Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK. Mol Cell Neurosci 31(3):470–480

    Article  CAS  PubMed  Google Scholar 

  29. Trajanovska S, Ban J, Huang J, Gregorevic P, Morsch M, Allen DG, Phillips WD (2019) Muscle specific kinase protects dystrophic mdx mouse muscles from eccentric contraction-induced loss of force-producing capacity. J Physiol 597(18):4831–4850

    Article  CAS  PubMed  Google Scholar 

  30. Cappellari O, Mantuano P, De Luca A (2020) “The social network” and muscular dystrophies: the lesson learnt about the niche environment as a target for therapeutic strategies. Cells 9(7):1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang NC, Sincennes MC, Chevalier FP, Brun CE, Lacaria M, Segalés J, Muñoz-Cánoves P, Ming H, Rudnicki MA (2018) The dystrophin glycoprotein complex regulates the epigenetic activation of muscle stem cell commitment. Cell Stem Cell 22(5):755-768.e756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lumeng C, Phelps S, Crawford GE, Walden PD, Barald K, Chamberlain JS (1999) Interactions between beta 2-syntrophin and a family of microtubule-associated serine/threonine kinases. Nat Neurosci 2(7):611–617

    Article  CAS  PubMed  Google Scholar 

  33. Dewey EB, Taylor DT, Johnston CA (2015) Cell Fate decision making through oriented cell division. J Dev Biol 3(4):129–157

    Article  CAS  PubMed  Google Scholar 

  34. Yamashita K, Suzuki A, Satoh Y, Ide M, Amano Y, Masuda-Hirata M, Hayashi YK, Hamada K, Ogata K, Ohno S (2010) The 8th and 9th tandem spectrin-like repeats of utrophin cooperatively form a functional unit to interact with polarity-regulating kinase PAR-1b. Biochem Biophys Res Commun 391(1):812–817

    Article  CAS  PubMed  Google Scholar 

  35. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21(12):1455–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biressi S, Miyabara EH, Gopinath SD, Carlig PM, Rando TA (2014) A Wnt-TGFβ2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice. Sci Transl Med 6(267):267ra176

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tidball JG, Welc SS, Wehling-Henricks M (2018) Immunobiology of inherited muscular dystrophies. Compr Physiol 8(4):1313–1356

    Article  PubMed  PubMed Central  Google Scholar 

  38. Perandini LA, Chimin P, Lutkemeyer DDS, Câmara NOS (2018) Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J 285(11):1973–1984

    Article  CAS  PubMed  Google Scholar 

  39. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunology (Baltimore, Md: 1950) 189(7):3669–3680

    Article  CAS  Google Scholar 

  40. Pavlidou T, Marinkovic M, Rosina M, Fuoco C, Vumbaca S, Gargioli C, Castagnoli L, Cesareni G (2019) Metformin delays satellite cell activation and maintains quiescence. Stem Cells Int 2019:5980465

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D, Zhang RH, Natarajan A, Nedospasov SA, Rossi FM (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21(7):786–794

    Article  CAS  PubMed  Google Scholar 

  42. Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG (2011) Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet 20(4):790–805

    Article  CAS  PubMed  Google Scholar 

  43. Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18(3):482–496

    Article  CAS  PubMed  Google Scholar 

  44. Mercuri E, Muntoni F (2013) Muscular dystrophies. Lancet (London, England) 381(9869):845–860

    Article  CAS  PubMed  Google Scholar 

  45. Tsuda T (2018) Clinical manifestations and overall management strategies for Duchenne muscular dystrophy. Methods Mol Biol (Clifton, NJ) 1687:19–28

    Article  CAS  Google Scholar 

  46. Benditt JO, Boitano L (2005) Respiratory support of individuals with Duchenne muscular dystrophy: toward a standard of care. Phys Med Rehabil Clin N Am 16(4):1125–1139, xii

    Article  PubMed  Google Scholar 

  47. Johnson EK, Zhang L, Adams ME, Phillips A, Freitas MA, Froehner SC, Green-Church KB, Montanaro F (2012) Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PLoS ONE 7(8):e43515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duboc D, Meune C, Lerebours G, Devaux JY, Vaksmann G, Bécane HM (2005) Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J Am Coll Cardiol 45(6):855–857

    Article  CAS  PubMed  Google Scholar 

  49. Silva MC, Magalhães TA, Meira ZM, Rassi CH, Andrade AC, Gutierrez PS, Azevedo CF, Gurgel-Giannetti J, Vainzof M, Zatz M et al (2017) Myocardial fibrosis progression in Duchenne and Becker muscular dystrophy: a randomized clinical trial. JAMA cardiology 2(2):190–199

    Article  PubMed  Google Scholar 

  50. Pane M, Messina S, Bruno C, D’Amico A, Villanova M, Brancalion B, Sivo S, Bianco F, Striano P, Battaglia D et al (2013) Duchenne muscular dystrophy and epilepsy. Neuromusc Disord NMD 23(4):313–315

    Article  CAS  PubMed  Google Scholar 

  51. Athanasopoulos T, Graham IR, Foster H, Dickson G (2004) Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther 11(Suppl 1):S109-121

    Article  CAS  PubMed  Google Scholar 

  52. Birch SM, Lawlor MW, Conlon TJ, Guo LJ, Crudele JM, Hawkins EC, Nghiem PP, Ahn M, Meng H, Beatka MJ et al (2023) Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Sci Transl Med 15(677):eabo1815

    Article  CAS  PubMed  Google Scholar 

  53. Mendell JR, Sahenk Z, Lehman K, Nease C, Lowes LP, Miller NF, Iammarino MA, Alfano LN, Nicholl A, Al-Zaidy S et al (2020) Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol 77(9):1122–1131

    Article  PubMed  Google Scholar 

  54. Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, Li J, Wang B, Monahan PE, Rabinowitz JE et al (2012) Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 20(2):443–455

    Article  CAS  PubMed  Google Scholar 

  55. Duan D (2018) Micro-dystrophin gene therapy goes systemic in Duchenne muscular dystrophy patients. Hum Gene Ther 29(7):733–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Min YL, Bassel-Duby R, Olson EN (2019) CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med 70:239–255

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Wang K, Zhang Y, Qi T, Yuan J, Zhang L, Qiu H, Wang J, Yang HT, Dai Y et al (2021) Therapeutic exon skipping through a CRISPR-guided cytidine deaminase rescues dystrophic cardiomyopathy in vivo. Circulation 144(22):1760–1776

    Article  CAS  PubMed  Google Scholar 

  58. Moretti A, Fonteyne L, Giesert F, Hoppmann P, Meier AB, Bozoglu T, Baehr A, Schneider CM, Sinnecker D, Klett K et al (2020) Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med 26(2):207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xiang X, Zhao X, Pan X, Dong Z, Yu J, Li S, Liang X, Han P, Qu K, Jensen JB et al (2021) Efficient correction of Duchenne muscular dystrophy mutations by SpCas9 and dual gRNAs. Mol Ther Nucleic Acids 24:403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, Zhu H, Ma J, Han R (2016) CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24(3):564–569

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kenjo E, Hozumi H, Makita Y, Iwabuchi KA, Fujimoto N, Matsumoto S, Kimura M, Amano Y, Ifuku M, Naoe Y et al (2021) Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat Commun 12(1):7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Li H, Min YL, Sanchez-Ortiz E, Huang J, Mireault AA, Shelton JM, Kim J, Mammen PPA, Bassel-Duby R et al (2020) Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv 6(8):eaay6812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Majeau N, Fortin-Archambault A, Gérard C, Rousseau J, Yaméogo P, Tremblay JP (2022) Serum extracellular vesicles for delivery of CRISPR-CAS9 ribonucleoproteins to modify the dystrophin gene. Mol Ther 30(7):2429–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pickar-Oliver A, Gough V, Bohning JD, Liu S, Robinson-Hamm JN, Daniels H, Majoros WH, Devlin G, Asokan A, Gersbach CA (2021) Full-length dystrophin restoration via targeted exon integration by AAV-CRISPR in a humanized mouse model of Duchenne muscular dystrophy. Mol Ther 29(11):3243–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Koo T, Wood MJ (2013) Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum Gene Ther 24(5):479–488

    Article  CAS  PubMed  Google Scholar 

  66. Ran N, Lin C, Leng L, Han G, Geng M, Wu Y, Bittner S, Moulton HM, Yin H (2021) MOTS-c promotes phosphorodiamidate morpholino oligomer uptake and efficacy in dystrophic mice. EMBO Mol Med 13(2):e12993

    Article  CAS  PubMed  Google Scholar 

  67. Lin C, Han G, Ning H, Song J, Ran N, Yi X, Seow Y, Yin H (2020) Glycine enhances satellite cell proliferation, cell transplantation, and oligonucleotide efficacy in dystrophic muscle. Mol Ther 28(5):1339–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lim KRQ, Woo S, Melo D, Huang Y, Dzierlega K, Shah MNA, Aslesh T, Roshmi RR, Echigoya Y, Maruyama R et al (2022) Development of DG9 peptide-conjugated single- and multi-exon skipping therapies for the treatment of Duchenne muscular dystrophy. Proc Natl Acad Sci USA 119(9):e2112546119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gushchina LV, Vetter TA, Frair EC, Bradley AJ, Grounds KM, Lay JW, Huang N, Suhaiba A, Schnell FJ, Hanson G et al (2022) Systemic PPMO-mediated dystrophin expression in the Dup2 mouse model of Duchenne muscular dystrophy. Mol Ther Nucleic Acids 30:479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Desjardins CA, Yao M, Hall J, O’Donnell E, Venkatesan R, Spring S, Wen A, Hsia N, Shen P, Russo R et al (2022) Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice. Nucleic Acids Res 50(20):11401–11414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gan L, Wu LCL, Wood JA, Yao M, Treleaven CM, Estrella NL, Wentworth BM, Hanson GJ, Passini MA (2022) A cell-penetrating peptide enhances delivery and efficacy of phosphorodiamidate morpholino oligomers in mdx mice. Mol Ther Nucleic Acids 30:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scaglioni D, Catapano F, Ellis M, Torelli S, Chambers D, Feng L, Beck M, Sewry C, Monforte M, Harriman S et al (2021) The administration of antisense oligonucleotide golodirsen reduces pathological regeneration in patients with Duchenne muscular dystrophy. Acta Neuropathol Commun 9(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McDonald CM, Shieh PB, Abdel-Hamid HZ, Connolly AM, Ciafaloni E, Wagner KR, Goemans N, Mercuri E, Khan N, Koenig E et al (2021) Open-label evaluation of eteplirsen in patients with duchenne muscular dystrophy amenable to exon 51 skipping: PROMOVI Trial. J Neuromusc Dis 8(6):989–1001

    Article  Google Scholar 

  74. Mitelman O, Abdel-Hamid HZ, Byrne BJ, Connolly AM, Heydemann P, Proud C, Shieh PB, Wagner KR, Dugar A, Santra S et al (2022) A combined prospective and retrospective comparison of long-term functional outcomes suggests delayed loss of ambulation and pulmonary decline with long-term eteplirsen treatment. J Neuromusc Dis 9(1):39–52

    Article  Google Scholar 

  75. Iff J, Gerrits C, Zhong Y, Tuttle E, Birk E, Zheng Y, Paul X, Henricson EK, McDonald CM (2022) Delays in pulmonary decline in eteplirsen-treated patients with Duchenne muscular dystrophy. Muscle Nerve 66(3):262–269

    Article  PubMed  Google Scholar 

  76. Wagner KR, Kuntz NL, Koenig E, East L, Upadhyay S, Han B, Shieh PB (2021) Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: a randomized, double-blind, placebo-controlled, dose-titration trial. Muscle Nerve 64(3):285–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roshmi RR, Yokota T (2023) Viltolarsen: from preclinical studies to FDA approval. Methods Mol Biol (Clifton, NJ) 2587:31–41

    Article  Google Scholar 

  78. Clemens PR, Rao VK, Connolly AM, Harper AD, Mah JK, McDonald CM, Smith EC, Zaidman CM, Nakagawa T, Hoffman EP (2022) Long-term functional efficacy and safety of viltolarsen in patients with Duchenne muscular dystrophy. J Neuromusc Dis 9(4):493–501

    Article  Google Scholar 

  79. Clemens PR, Rao VK, Connolly AM, Harper AD, Mah JK, Smith EC, McDonald CM, Zaidman CM, Morgenroth LP, Osaki H et al (2020) Safety, tolerability, and efficacy of viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol 77(8):982–991

    Article  PubMed  Google Scholar 

  80. Komaki H, Takeshima Y, Matsumura T, Ozasa S, Funato M, Takeshita E, Iwata Y, Yajima H, Egawa Y, Toramoto T et al (2020) Viltolarsen in Japanese Duchenne muscular dystrophy patients: a phase 1/2 study. Ann Clin Transl Neurol 7(12):2393–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L, Danos O (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science (New York, NY) 306(5702):1796–1799

    Article  CAS  Google Scholar 

  82. Forand A, Muchir A, Mougenot N, Sevoz-Couche C, Peccate C, Lemaitre M, Izabelle C, Wood M, Lorain S, Piétri-Rouxel F (2020) Combined treatment with peptide-conjugated phosphorodiamidate morpholino oligomer-PPMO and AAV-U7 rescues the severe DMD phenotype in mice. Mol Ther Methods Clin Dev 17:695–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guglieri M, Clemens PR, Perlman SJ, Smith EC, Horrocks I, Finkel RS, Mah JK, Deconinck N, Goemans N, Haberlova J et al (2022) Efficacy and safety of vamorolone vs placebo and prednisone among boys with duchenne muscular dystrophy: a randomized clinical trial. JAMA Neurol 79(10):1005–1014

    Article  PubMed  PubMed Central  Google Scholar 

  84. Smith EC, Conklin LS, Hoffman EP, Clemens PR, Mah JK, Finkel RS, Guglieri M, Tulinius M, Nevo Y, Ryan MM et al (2020) Efficacy and safety of vamorolone in Duchenne muscular dystrophy: an 18-month interim analysis of a non-randomized open-label extension study. PLoS Med 17(9):e1003222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Weiß C, Stoltenburg C, Bayram D, Funk J, Lebek S (2020) Positive effect of the combination of multilevel contracture release and glucocorticoid treatment in Duchenne muscular dystrophy. J Child Orthop 14(4):349–352

    Article  PubMed  PubMed Central  Google Scholar 

  86. Previtali SC, Gidaro T, Díaz-Manera J, Zambon A, Carnesecchi S, Roux-Lombard P, Spitali P, Signorelli M, Szigyarto CA, Johansson C et al (2020) Rimeporide as a first- in-class NHE-1 inhibitor: results of a phase Ib trial in young patients with Duchenne muscular dystrophy. Pharmacol Res 159:104999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Komaki H, Maegaki Y, Matsumura T, Shiraishi K, Awano H, Nakamura A, Kinoshita S, Ogata K, Ishigaki K, Saitoh S et al (2020) Early phase 2 trial of TAS-205 in patients with Duchenne muscular dystrophy. Ann Clin Transl Neurol 7(2):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Finkel RS, McDonald CM, Lee Sweeney H, Finanger E, Neil Knierbein E, Wagner KR, Mathews KD, Marks W, Statland J, Nance J et al (2021) A randomized, double-blind, placebo-controlled, global phase 3 study of edasalonexent in pediatric patients with Duchenne muscular dystrophy: results of the PolarisDMD trial. J Neuromusc Dis 8(5):769–784

    Article  Google Scholar 

  89. Nasomyont N, Keefe C, Tian C, Hornung L, Khoury J, Tilden JC, Hochwalt P, Jackson E, Rybalsky I, Wong BL et al (2020) Safety and efficacy of teriparatide treatment for severe osteoporosis in patients with Duchenne muscular dystrophy. Osteoporos Int 31(12):2449–2459

    Article  CAS  PubMed  Google Scholar 

  90. Tian C, Wong BL, Hornung L, Khoury JC, Rybalsky I, Shellenbarger KC, Rutter MM (2020) Oral bisphosphonate treatment in patients with Duchenne muscular dystrophy on long term glucocorticoid therapy. Neuromusc Disord NMD 30(7):599–610

    Article  PubMed  Google Scholar 

  91. Segatto M, Szokoll R, Fittipaldi R, Bottino C, Nevi L, Mamchaoui K, Filippakopoulos P, Caretti G (2020) BETs inhibition attenuates oxidative stress and preserves muscle integrity in Duchenne muscular dystrophy. Nat Commun 11(1):6108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rybalka E, Goodman CA, Campelj DG, Hayes A, Timpani CA (2021) Adenylosuccinic acid: a novel inducer of the cytoprotectant Nrf2 with efficacy in Duchenne muscular dystrophy. Curr Med Res Opin 37(3):465–467

    Article  CAS  PubMed  Google Scholar 

  93. Timpani CA, Goodman CA, Stathis CG, White JD, Mamchaoui K, Butler-Browne G, Gueven N, Hayes A, Rybalka E (2020) Adenylosuccinic acid therapy ameliorates murine Duchenne muscular dystrophy. Sci Rep 10(1):1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dort J, Orfi Z, Fabre P, Molina T, Conte TC, Greffard K, Pellerito O, Bilodeau JF, Dumont NA (2021) Resolvin-D2 targets myogenic cells and improves muscle regeneration in Duchenne muscular dystrophy. Nat Commun 12(1):6264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Krishnan SM, Nordlohne J, Dietz L, Vakalopoulos A, Haning P, Hartmann E, Seifert R, Huser J, Mathar I, Sandner P (2021) Assessing the use of the sGC stimulator BAY-747, as a potential treatment for Duchenne muscular dystrophy. Int J Mol Sci 22(15):8016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dubuisson N, Davis-López de Carrizosa MA, Versele R, Selvais CM, Noel L, Van den Bergh PYD, Brichard SM, Abou-Samra M (2022) Inhibiting the inflammasome with MCC950 counteracts muscle pyroptosis and improves Duchenne muscular dystrophy. Front Immunol 13:1049076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Abou-Samra M, Selvais CM, Boursereau R, Lecompte S, Noel L, Brichard SM (2020) AdipoRon, a new therapeutic prospect for Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 11(2):518–533

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hightower RM, Reid AL, Gibbs DE, Wang Y, Widrick JJ, Kunkel LM, Kastenschmidt JM, Villalta SA, van Groen T, Chang H et al (2020) The SINE compound KPT-350 blocks dystrophic pathologies in DMD zebrafish and mice. Mol Ther 28(1):189–201

    Article  CAS  PubMed  Google Scholar 

  99. English KG, Reid AL, Samani A, Coulis GJF, Villalta SA, Walker CJ, Tamir S, Alexander MS (2022) Next-generation SINE compound KPT-8602 ameliorates dystrophic pathology in zebrafish and mouse models of DMD. Biomedicines 10(10):2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu D, Zhao L, Jiang J, Li S, Sun Z, Huang X, Li C, Wang T, Sun L, Li X et al (2020) A potential therapeutic effect of catalpol in Duchenne muscular dystrophy revealed by binding with TAK1. J Cachexia Sarcopenia Muscle 11(5):1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  101. Stocco A, Smolina N, Sabatelli P, Šileikytė J, Artusi E, Mouly V, Cohen M, Forte M, Schiavone M, Bernardi P (2021) Treatment with a triazole inhibitor of the mitochondrial permeability transition pore fully corrects the pathology of sapje zebrafish lacking dystrophin. Pharmacol Res 165:105421

    Article  CAS  PubMed  Google Scholar 

  102. Lambert MR, Spinazzola JM, Widrick JJ, Pakula A, Conner JR, Chin JE, Owens JM, Kunkel LM (2021) PDE10A inhibition reduces the manifestation of pathology in DMD zebrafish and represses the genetic modifier PITPNA. Mol Ther 29(3):1086–1101

    Article  CAS  PubMed  Google Scholar 

  103. Farr GH 3rd, Morris M, Gomez A, Pham T, Kilroy E, Parker EU, Said S, Henry C, Maves L (2020) A novel chemical-combination screen in zebrafish identifies epigenetic small molecule candidates for the treatment of Duchenne muscular dystrophy. Skelet Muscle 10(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Spreafico M, Cafora M, Bragato C, Capitanio D, Marasca F, Bodega B, De Palma C, Mora M, Gelfi C, Marozzi A et al (2021) Targeting HDAC8 to ameliorate skeletal muscle differentiation in Duchenne muscular dystrophy. Pharmacol Res 170:105750

    Article  CAS  PubMed  Google Scholar 

  105. Ellwood RA, Slade L, Lewis J, Torregrossa R, Sudevan S, Piasecki M, Whiteman M, Etheridge T, Szewczyk NJ (2022) Sulfur amino acid supplementation displays therapeutic potential in a C. elegans model of Duchenne muscular dystrophy. Commun Biol 5(1):1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ellwood RA, Hewitt JE, Torregrossa R, Philp AM, Hardee JP, Hughes S, van de Klashorst D, Gharahdaghi N, Anupom T, Slade L et al (2021) Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model. Proc Natl Acad Sci USA 118(9):e2018342118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Morroni J, Schirone L, Valenti V, Zwergel C, Riera CS, Valente S, Vecchio D, Schiavon S, Ragno R, Mai A et al (2022) Inhibition of PKCtheta improves dystrophic heart phenotype and function in a novel model of DMD cardiomyopathy. Int J Mol Sci 23(4):2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guo Z, Geng M, Huang Y, Han G, Jing R, Lin C, Zhang X, Zhang M, Fan G, Wang F et al (2022) Upregulation of Wilms’ Tumor 1 in epicardial cells increases cardiac fibrosis in dystrophic mice. Cell Death Differ 29(10):1928–1940

    Article  CAS  PubMed  Google Scholar 

  109. Huang D, Yue F, Qiu J, Deng M, Kuang S (2020) Polymeric nanoparticles functionalized with muscle-homing peptides for targeted delivery of phosphatase and tensin homolog inhibitor to skeletal muscle. Acta Biomater 118:196–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Creisméas A, Gazaille C, Bourdon A, Lallemand MA, François V, Allais M, Ledevin M, Larcher T, Toumaniantz G, Lafoux A et al (2021) TRPC3, but not TRPC1, as a good therapeutic target for standalone or complementary treatment of DMD. J Transl Med 19(1):519

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wasala NB, Yue Y, Lostal W, Wasala LP, Niranjan N, Hajjar RJ, Babu GJ, Duan D (2020) Single SERCA2a therapy ameliorated dilated cardiomyopathy for 18 months in a mouse model of Duchenne muscular dystrophy. Mol Ther 28(3):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dubinin MV, Starinets VS, Belosludtseva NV, Mikheeva IB, Chelyadnikova YA, Igoshkina AD, Vafina AB, Vedernikov AA, Belosludtsev KN (2022) BK(Ca) activator NS1619 improves the structure and function of skeletal muscle mitochondria in Duchenne dystrophy. Pharmaceutics 14(11):2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kamdar F, Das S, Gong W, Klaassen Kamdar A, Meyers TA, Shah P, Ervasti JM, Townsend D, Kamp TJ, Wu JC et al (2020) Stem cell-derived cardiomyocytes and beta-adrenergic receptor blockade in Duchenne muscular dystrophy cardiomyopathy. J Am Coll Cardiol 75(10):1159–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu L, Zhang X, Yang Y, Li D, Tang K, Zhao Z, He W, Wang C, Sahoo N, Converso-Baran K et al (2020) Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. Sci Adv 6(6):eaaz2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Luan P, D’Amico D, Andreux PA, Laurila PP, Wohlwend M, Li H, de Lima TI, Place N, Rinsch C, Zanou N et al (2021) Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci Transl Med 13(588):eabb0319

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Y, Li Y, Hu Q, Xi Y, Xing Z, Zhang Z, Huang L, Wu J, Liang K, Nguyen TK et al (2020) The lncRNA H19 alleviates muscular dystrophy by stabilizing dystrophin. Nat Cell Biol 22(11):1332–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Oliveira-Santos A, Dagda M, Burkin DJ (2022) Sunitinib inhibits STAT3 phosphorylation in cardiac muscle and prevents cardiomyopathy in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 31(14):2358–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Haupenthal D, Possato JC, Zaccaron RP, Mendes C, Rodrigues MS, Nesi RT, Pinho RA, Feuser PE, Machado-de-Ávila RA, Comim CM et al (2020) Effects of chronic treatment with gold nanoparticles on inflammatory responses and oxidative stress in Mdx mice. J Drug Target 28(1):46–54

    Article  CAS  PubMed  Google Scholar 

  119. Li J, Fredericks M, Cannell M, Wang K, Sako D, Maguire MC, Grenha R, Liharska K, Krishnan L, Bloom T et al (2021) ActRIIB:ALK4-Fc alleviates muscle dysfunction and comorbidities in murine models of neuromuscular disorders. J Clin Investig 131(4):e138634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, Belicchi M, Erratico S, D’Ursi P, Bianco F et al (2020) Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med 12(1):e11019

    Article  CAS  PubMed  Google Scholar 

  121. Sung DK, Kim H, Park SE, Lee J, Kim JA, Park YC, Jeon HB, Chang JW, Lee J (2022) A new method of myostatin inhibition in mice via oral administration of Lactobacillus casei expressing modified myostatin protein, BLS-M22. Int J Mol Sci 23(16):9059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ran N, Gao X, Dong X, Li J, Lin C, Geng M, Yin H (2020) Effects of exosome-mediated delivery of myostatin propeptide on functional recovery of mdx mice. Biomaterials 236:119826

    Article  CAS  PubMed  Google Scholar 

  123. Xu D, Li S, Wang L, Jiang J, Zhao L, Huang X, Sun Z, Li C, Sun L, Li X et al (2021) TAK1 inhibition improves myoblast differentiation and alleviates fibrosis in a mouse model of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 12(1):192–208

    Article  PubMed  Google Scholar 

  124. Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R, Dugré FJ, Sylvain M, Lachance JG, Deschênes L et al (2006) Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 65(4):371–386

    Article  CAS  PubMed  Google Scholar 

  125. Nitahara-Kasahara Y, Kuraoka M, Guillermo PH, Hayashita-Kinoh H, Maruoka Y, Nakamura-Takahasi A, Kimura K, Takeda S, Okada T (2021) Dental pulp stem cells can improve muscle dysfunction in animal models of Duchenne muscular dystrophy. Stem Cell Res Ther 12(1):78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Park S, Jeong S, Nam YH, Yum Y, Jung SC (2022) Transplantation of differentiated tonsil-derived mesenchymal stem cells ameliorates murine Duchenne muscular dystrophy via autophagy activation. Tissue Eng Regen Med 19(6):1283–1294

    Article  CAS  PubMed  Google Scholar 

  127. Siemionow M, Langa P, Brodowska S, Kozlowska K, Zalants K, Budzynska K, Heydemann A (2022) Long-term protective effect of human dystrophin expressing chimeric (DEC) cell therapy on amelioration of function of cardiac, respiratory and skeletal muscles in Duchenne muscular dystrophy. Stem Cell Rev Rep 18(8):2872–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Siemionow M, Szilagyi E, Cwykiel J, Domaszewska-Szostek A, Heydemann A, Garcia-Martinez J, Siemionow K (2021) Transplantation of dystrophin expressing chimeric human cells of myoblast/mesenchymal stem cell origin improves function in Duchenne muscular dystrophy model. Stem Cells Dev 30(4):190–202

    Article  CAS  PubMed  Google Scholar 

  129. Meng J, Sweeney NP, Doreste B, Muntoni F, McClure M, Morgan J (2020) Restoration of functional full-length dystrophin after intramuscular transplantation of foamy virus-transduced myoblasts. Hum Gene Ther 31(3–4):241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chakkalakal JV, Thompson J, Parks RJ, Jasmin BJ (2005) Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. FASEB J 19(8):880–891

    Article  CAS  PubMed  Google Scholar 

  131. Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM, Davies K (1998) Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 4(12):1441–1444

    Article  CAS  PubMed  Google Scholar 

  132. Tinsley JM, Potter AC, Phelps SR, Fisher R, Trickett JI, Davies KE (1996) Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384(6607):349–353

    Article  CAS  PubMed  Google Scholar 

  133. Babbs A, Berg A, Chatzopoulou M, Davies KE, Davies SG, Edwards B, Elsey DJ, Emer E, Guiraud S, Harriman S et al (2020) 2-Arylbenzo[d]oxazole phosphinate esters as second-generation modulators of utrophin for the treatment of Duchenne muscular dystrophy. J Med Chem 63(14):7880–7891

    Article  CAS  PubMed  Google Scholar 

  134. Chatzopoulou M, Conole D, Emer E, Rowley JA, Willis NJ, Squire SE, Gill B, Brough S, Wilson FX, Wynne GM et al (2022) Structure-activity relationships of 2-pyrimidinecarbohydrazides as utrophin modulators for the potential treatment of Duchenne muscular dystrophy. Bioorg Med Chem 69:116812

    Article  CAS  PubMed  Google Scholar 

  135. Sengupta K, Loro E, Khurana TS (2020) PMO-based let-7c site blocking oligonucleotide (SBO) mediated utrophin upregulation in mdx mice, a therapeutic approach for Duchenne muscular dystrophy (DMD). Sci Rep 10(1):21492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Frank DE, Schnell FJ, Akana C, El-Husayni SH, Desjardins CA, Morgan J, Charleston JS, Sardone V, Domingos J, Dickson G et al (2020) Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology 94(21):e2270–e2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Servais L, Mercuri E, Straub V, Guglieri M, Seferian AM, Scoto M, Leone D, Koenig E, Khan N, Dugar A et al (2022) Long-term safety and efficacy data of golodirsen in ambulatory patients with Duchenne muscular dystrophy amenable to exon 53 skipping: a first-in-human, multicenter, two-part, open-label, phase 1/2 trial. Nucleic Acid Ther 32(1):29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chemello F, Chai AC, Li H, Rodriguez-Caycedo C, Sanchez-Ortiz E, Atmanli A, Mireault AA, Liu N, Bassel-Duby R, Olson EN (2021) Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv 7(18):eabg4910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xu L, Zhang C, Li H, Wang P, Gao Y, Mokadam NA, Ma J, Arnold WD, Han R (2021) Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun 12(1):3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li G, Jin M, Li Z, Xiao Q, Lin J, Yang D, Liu Y, Wang X, Xie L, Ying W et al (2023) Mini-dCas13X-mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J Clin Investig 133(3):e162809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful for the contribution to language help and writing assistance from Lai Xu at Nantong University during the research.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 82072160, 32130060, 81901933, 32000725), the Major Natural Science Research Projects in Universities of Jiangsu Province (No. 20KJA310012), the Natural Science Foundation of Jiangsu Province (Nos. BK20202013, BK20201209, BK20200973), the "QingLan Project" in Jiangsu Universities, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program (Nos. JC22022037, MS22022010).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HS, XY and XC. Methodology: MC, YC, ZG, XC, BL, CZ, WY, QC, YS. Resources: MC, YC, ZG, XC, BL, CZ, WY, QC, YS. Data curation: MC, YC, ZG, XC, BL, CZ, WY, QC, YS. Writing—original draft preparation: MC, YC, ZG, XY, XC and HS. Review and editing: MC, XY, XC and HS. Visualization: MC, YS, and HS. Supervision: HS. Project administration: HS. Funding acquisition: HS.

Corresponding authors

Correspondence to Xinlei Yao, Xiaoyang Chen or Hualin Sun.

Ethics declarations

Conflicts of interest

All authors have no conflict of interest to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, M., Cai, Y., Gao, Z. et al. Duchenne muscular dystrophy: pathogenesis and promising therapies. J Neurol 270, 3733–3749 (2023). https://doi.org/10.1007/s00415-023-11796-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-11796-x

Keywords

Navigation