Skip to main content
Log in

Differential effect of total food withdrawal and dietary protein restriction on brain content of free histidine in the rat

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Total withdrawal of food from young rats for 72–120 h produced an increase in brain content of free histidine which was less pronounced than the effect of prolonged dietary protein deficiency. The data suggested that the elevated brain content of histidine in both fasting and protein deficiency was due partly to increased plasma level of the amino acid but mainly to diminished plasma concentrations of the neutral amino acids known to share the same transport system across the blood-brain barrier. The results also support the idea that total starvation, and most likely, prolonged caloric restriction, like protein malnutrition, elicit increased formation of histamine in brain since the key regulatory enzyme,l-histidine carboxylyase (EC 4.1.1.22) functions at less than maximal efficiency under normal brain levels of histidine. These findings in the rat are probably relevant to the human in view of evidence that theK m of blood-brain barrier neutral amino acid transport in the latter is low and therefore similar to the situation in the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stifel, F. B., and Herman, R. H. 1971. Histidine metabolism. Am. J. Clin. Nutr. 24:207–217.

    Google Scholar 

  2. Lajtha, A., and Toth, J. 1974. Postmortem changes in the cerebral free amino acid pool. Brain Res. 76:546–551.

    Google Scholar 

  3. Hough, L. B., and Green, J. P. 1984. Histamine and its receptors in the nervous system. Pages 145–211, in Lajtha, A., (ed.), Handbook of neurochemistry: Receptors in the nervous system Vol. 6, Plenum Press, New York.

    Google Scholar 

  4. Schwartz, J. C. 1977. Histaminergic mechanisms in brain. Annu. Rev. Pharmacol. Toxicol. 17:325–339.

    Google Scholar 

  5. Taylor, K. M. 1975. Brain histamine. Pages 327–379 in Iversen, L. L., Iversen, S. D., and Snyder, S. H. (eds.), Biochemistry of biogenic amines. Vol. 3, Plenum Press, New York.

    Google Scholar 

  6. Lee, N. S., Fitzpatrick, D., Meier, E., and Fisher, H. 1981. Influence of dietary histidine on tissue histamine concentration, histidine decarboxylase and histamine methyltransferase activity in the rat. Agents Actions 11:307–311.

    Google Scholar 

  7. Young, J. M. 1982. Neurochemical and neuropharmacological aspects of histamine receptors. Neurochem. International 4:97–99.

    Google Scholar 

  8. Hayashi, T. 1966. Gamma-aminobutyric acid and its derivatives in mental health. Pages 160–170 in Martin, G. J., and Kisch, B. (eds.) Enzymes in mental health. J. B. Lippincott Company, Philadelphia.

    Google Scholar 

  9. Perry, T. L., Kish, S. L., Sjaastad, O., Gjessing, L. R., Nesbakken, R., Schrader, H., and Loken, A. A. C. 1979. Homocarnosinosis: Increased content of homocarnosine and deficiency of homocarnosinase in brain. J. Neurochem. 32:1637–1640.

    Google Scholar 

  10. Enwonwu, C. O. 1986. Potential relevance of impaired histidine metabolism to the immunodeficiency in human protein-energy malnutrition. Nutr. Res. 6:337–348.

    Google Scholar 

  11. Enwonwu, C. O. 1986. Pathophysiological implications of increased brain burden of histamine in protein malnutrition. Med. Hypotheses. (In press).

  12. Panula, P., Yang, H. Y. T., and Costa, E. 1984. Histamine—containing neurons in the rat hypothalamus. Proc. Nat. Acad. Sci. USA. 81:2572–2576.

    Google Scholar 

  13. Enwonwu, C. O., and Okadigbo, G. O. 1983. Rapid development of oedema and defective brain histidine metabolism in young guinea pigs fed a protein-energy deficient diet. Br. J. Exp. Path 64:487–496.

    Google Scholar 

  14. Enwonwu, C. O., and Okolie, E. E. 1983. Differential effects of protein malnutrition and ascorbic acid deficiency on histidine metabolism in the brain of infant nonhuman primates. J. Neurochem. 41:230–238.

    Google Scholar 

  15. Ramanamurrthy, P. S. V. 1977. Maternal and early postnatal malnutrition and transmitter amines in rat brain. J. Neurochem. 28:253–254.

    Google Scholar 

  16. Enwonwu, C. O., and worthington, B. S. 1974. Regional distribution of homocarnosine and other ninhydrin-positive substances in brains of malnourished monkeys. J. Neurochem. 22:1045–1052.

    Google Scholar 

  17. Enwonwu, C. O., and Worthington, B. S. 1975. Elevation of brain histamine content in protein-calorie deficient rats. J. Neurochem. 24:941–945.

    Google Scholar 

  18. Enwonwu, C. O., and Okadigbo, G. O. 1983. Influence of a low protein diet on brain contents of free amino acids and histamine in the weanling guinea pig. Nutr. Res. 3:899–912.

    Google Scholar 

  19. Enwonwu, C. O., and Sreebny, L. M. 1971. Studies of hepatic lesions of experimental protein—calorie malnutrition in rats, and immediate effects of refeeding an adequate protein diet. J. Nutr. 101:501–514.

    Google Scholar 

  20. Snedecor, G. W., and Cochran, W. G. 1980. Statistical methods. Seventh edition. Page 215. The Iowa State University Press, Ames, Iowa.

    Google Scholar 

  21. Nowak, Jr., T. S., and Munro, H. N. 1977. Effects of proteincalorie malnutrition on biochemical aspects of brain development. pages 193–260 in Wurtman, R. J., and Wurtman, J. J. (eds.), Nutrition and the brain, Vol. 2. Raven Press, New York.

    Google Scholar 

  22. Lajtha, A. 1975. Alterations in the level and distribution of cerebral amino acids. Pages 575–584 in Brady, R. O. (ed.), The Nervous system. Vol. 1: The basic neurosciences, Raven Press, New York.

    Google Scholar 

  23. Anderson, G. H. 1981. Diet, neurotransmitters and brain function. Br. Med. Bull. 37:95–100.

    Google Scholar 

  24. Pardridge, W. M. 1983. Brain metabolism: a perspective from the blood-brain barrier. Physiol. Rev. 63:1481–1535.

    Google Scholar 

  25. Pardridge, W. M., and Choi, T. B. 1986. Neutral amino acid transport at the human blood-brain barrier. Federation Proc. 45:2073–2078.

    Google Scholar 

  26. Fernstrom, J. D., and Wurtman, R. J. 1972. Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178:414–416.

    Google Scholar 

  27. Wurtman, R. J. 1979. When—and why—should nutritional state control neurotransmitter synthesis? J. Neural Trans. Suppl. 15:69–79.

    Google Scholar 

  28. Peng, Y., Tews, J. K., and Harper, A. E., 1972. Amino acid imbalance, protein intake, and changes in rat brain and plasma amino acids. Am. J. Physiol. 222:314–321.

    Google Scholar 

  29. Oldendorf, W. H., and Szabo, J. 1976. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol. 230:94–98.

    Google Scholar 

  30. Munro, H. N. 1970. Free amino acid pools and their role in regulation. Page 299 in Munro, H. N. (ed.) Mammalian protein metabolism. Vol. IV. Academic Press, New York.

    Google Scholar 

  31. Miller, L. P., Pardridge, W. M., Braun, L. D., and Oldendorf, W. H. 1985. Kinetic constants for blood-brain barrier amino acid transport in conscious rats. J. Neurochem. 45:1427–1432.

    Google Scholar 

  32. Fernstrom, J. D., and Faller, D. V. 1978. Neutral amino acids in the brain: changes in response to food ingestion. J. Neurochem. 30:1531–1538.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enwonwu, C.O. Differential effect of total food withdrawal and dietary protein restriction on brain content of free histidine in the rat. Neurochem Res 12, 483–487 (1987). https://doi.org/10.1007/BF00972302

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972302

Key words

Navigation