Skip to main content
Log in

Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Molecular mechanisms of long-term changes in brain metabolism after thiamine administration (single i.p. injection, 400 mg/kg) were investigated. Protocols for discrimination of the activities of the thiamine diphosphate (ThDP)-dependent 2-oxoglutarate and 2-oxoadipate dehydrogenases were developed to characterize specific regulation of the multienzyme complexes of the 2-oxoglutarate (OGDHC) and 2-oxoadipate (OADHC) dehydrogenases by thiamine. The thiamine-induced changes depended on the brain-region-specific expression of the ThDP-dependent dehydrogenases. In the cerebral cortex, the original levels of OGDHC and OADHC were relatively high and not increased by thiamine, whereas in the cerebellum thiamine upregulated the OGDHC and OADHC activities, whose original levels were relatively low. The effects of thiamine on each of the complexes were different and associated with metabolic rearrangements, which included (i) the brain-region-specific alterations of glutamine synthase and/or glutamate dehydrogenase and NADP+-dependent malic enzyme, (ii) the brain-region-specific changes of the amino acid profiles, and (iii) decreased levels of a number of amino acids in blood plasma. Along with the assays of enzymatic activities and average levels of amino acids in the blood and brain, the thiamine-induced metabolic rearrangements were assessed by analysis of correlations between the levels of amino acids. The set and parameters of the correlations were tissue-specific, and their responses to the thiamine treatment provided additional information on metabolic changes, compared to that gained from the average levels of amino acids. Taken together, the data suggest that thiamine decreases catabolism of amino acids by means of a complex and long-term regulation of metabolic flux through the tricarboxylic acid cycle, which includes coupled changes in activities of the ThDP-dependent dehydrogenases of 2-oxoglutarate and 2-oxoadipate and adjacent enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GDH:

glutamate dehydrogenase

GS:

glutamine synthase

MDH:

malate dehydrogenase

ME:

NADP+-dependent malic enzyme

OADH:

2-oxoadipate dehydrogenase

OADHC:

2-oxoadipate dehydrogenase complex

OGDH:

2-oxoglutarate dehydrogenase

OGDHC:

2-oxoglutarate dehydrogenase complex

PDHC:

pyruvate dehydrogenase complex

TCA:

tricarboxylic acid

ThDP:

thiamine diphosphate

References

  1. Bunik, V. I. (2014) Benefits of thiamin (vitamin B1) administration in neurodegenerative diseases may be due to both the coenzyme and non-coenzyme roles of thiamin, J. Alzheimer’s Dis. Parkinson., 4, 173–177.

    Google Scholar 

  2. Butterworth, R. F., and Heroux, M. (1989) Effect of pyrithiamine treatment and subsequent thiamine rehabilitation on regional cerebral amino acids and thiaminedependent enzymes, J. Neurochem., 52, 1079–1084.

    Article  CAS  PubMed  Google Scholar 

  3. Gibson, G. E., Blass, J. P., Beal, M. F., and Bunik, V. (2005) The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration, Mol. Neurobiol., 31, 43–63.

    Article  CAS  PubMed  Google Scholar 

  4. Artiukhov, A. V., Bunik, V. I., and Graf, A. V. (2016) Directed regulation of multienzyme complexes of the 2-oxo acid dehydrogenases using phosphonate and phosphinate analogs of 2-oxo acids, Biochemistry (Moscow), 81, 1791–1816.

    Article  Google Scholar 

  5. Graf, A., Trofimova, L., Loshinskaja, A., Mkrtchyan, G., Strokina, A., Lovat, M., Tylicky, A., Strumilo, S., Bettendorff, L., and Bunik, V. I. (2013) Up-regulation of 2-oxoglutarate dehydrogenase as a stress response, Int. J. Biochem. Cell Biol., 45, 175–189.

    Article  CAS  PubMed  Google Scholar 

  6. Trofimova, L. K., Araujo, W. L., Strokina, A. A., Fernie, A. R., Bettendorff, L., and Bunik, V. I. (2012) Consequences of the alpha-ketoglutarate dehydrogenase inhibition for neuronal metabolism and survival: implications for neurodegenerative diseases, Curr. Med. Chem., 19, 5895–5906.

    Article  CAS  PubMed  Google Scholar 

  7. Navarro, D., Zwingmann, C., and Butterworth, R. F. (2008) Region-selective alterations of glucose oxidation and amino acid synthesis in the thiamine-deficient rat brain: a re-evaluation using 1H/13C nuclear magnetic resonance spectroscopy, J. Neurochem., 106, 603–612.

    Article  CAS  PubMed  Google Scholar 

  8. Bunik, V. I., Tylicki, A., and Lukashev, N. V. (2013) Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models, FEBS J., 280, 6412–6442.

    Article  CAS  PubMed  Google Scholar 

  9. Bunik, V. I., Schloss, J. V., Pinto, J. T., Dudareva, N., and Cooper, A. J. (2011) A survey of oxidative paracatalytic reactions catalyzed by enzymes that generate carbanionic intermediates: implications for ROS production, cancer etiology, and neurodegenerative diseases, Adv. Enzymol. Rel. Areas Mol. Biol., 77, 307–360.

    Article  CAS  Google Scholar 

  10. Wang, D., and Hazell, A. S. (2010) Microglial activation is a major contributor to neurologic dysfunction in thiamine deficiency, Biochem. Biophys. Res. Commun., 402, 123–128.

    Article  CAS  PubMed  Google Scholar 

  11. Spinas, E., Saggini, A., Kritas, S. K., Cerulli, G., Caraffa, A., Antinolfi, P., Pantalone, A., Frydas, A., Tei, M., Speziali, A., Saggini, R., Pandolfi, F., and Conti, P. (2015) Crosstalk between vitamin B and immunity, J. Biol. Regul. Homeost. Agents, 29, 283–288.

    CAS  PubMed  Google Scholar 

  12. Diaz-Munoz, M. D., Bell, S. E., Fairfax, K., Monzon-Casanova, E., Cunningham, A. F., Gonzalez-Porta, M., Andrews, S. R., Bunik, V. I., Zarnack, K., Curk, T., Heggermont, W. A., Heymans, S., Gibson, G. E., Kontoyiannis, D. L., Ule, J., and Turner, M. (2015) The RNA-binding protein HuR is essential for the B cell antibody response, Nat. Immunol., 16, 415–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bunik, V. I., and Degtyarev, D. (2008) Structure-function relationships in the 2-oxo acid dehydrogenase family: substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins, Proteins, 71, 874–890.

    Article  CAS  PubMed  Google Scholar 

  14. Hagen, J., te Brinke, H., Wanders, R. J., Knegt, A. C., Oussoren, E., Hoogeboom, A. J., Ruijter, G. J., Becker, D., Schwab, K. O., Franke, I., Duran, M., Waterham, H. R., Sass, J. O., and Houten, S. M. (2015) Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria, J. Inher. Metab. Dis., 38, 873–879.

    Article  CAS  PubMed  Google Scholar 

  15. Stiles, A. R., Venturoni, L., Mucci, G., Elbalalesy, N., Woontner, M., Goodman, S., and Abdenur, J. E. (2015) New cases of DHTKD1 mutations in patients with 2-ketoadipic aciduria, JIMD Rep., 25, 15–19.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Danhauser, K., Sauer, S. W., Haack, T. B., Wieland, T., Staufner, C., Graf, E., Zschocke, J., Strom, T. M., Traub, T., Okun, J. G., Meitinger, T., Hoffmann, G. F., Prokisch, H., and Kolker, S. (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria, Am. J. Hum. Genet., 91, 1082–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, W. Y., Gu, M. M., Sun, L. H., Guo, W. T., Zhu, H. B., Ma, J. F., Yuan, W. T., Kuang, Y., Ji, B. J., Wu, X. L., Chen, Y., Zhang, H. X., Sun, F. T., Huang, W., Huang, L., Chen, S. D., and Wang, Z. G. (2012) A nonsense mutation in DHTKD1 causes Charcot–Marie–Tooth disease type 2 in a large Chinese pedigree, Am. J. Hum. Genet., 91, 1088–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hallen, A., Jamie, J. F., and Cooper, A. J. (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries, Amino Acids, 45, 1249–1272.

    Article  CAS  PubMed  Google Scholar 

  19. Dunckelmann, R. J., Ebinger, F., Schulze, A., Wanders, R. J., Rating, D., and Mayatepek, E. (2000) 2-Ketoglutarate dehydrogenase deficiency with intermittent 2-ketoglutaric aciduria, Neuropediatrics, 31, 35–38.

    Article  CAS  PubMed  Google Scholar 

  20. Bunik, V., Westphal, A. H., and De Kok, A. (2000) Kinetic properties of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii evidence for the formation of a precatalytic complex with 2-oxoglutarate, FEBS J., 267, 3583–3591.

    Article  CAS  Google Scholar 

  21. Bunik, V. I., and Pavlova, O. G. (1993) Inactivation of alphaketoglutarate dehydrogenase during oxidative decarboxylation of alpha-ketoadipic acid, FEBS Lett., 323, 166–170.

    Article  CAS  PubMed  Google Scholar 

  22. Sauer, S. W., Opp, S., Hoffmann, G. F., Koeller, D. M., Okun, J. G., and Kolker, S. (2011) Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I, Brain, 134, 157–170.

    Article  PubMed  Google Scholar 

  23. Mkrtchyan, G., Aleshin, V., Parkhomenko, Y., Kaehne, T., Luigi Di Salvo, M., Parroni, A., Contestabile, R., Vovk, A., Bettendorff, L., and Bunik, V. (2015) Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis, Sci. Rep., 5, 12583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aleshin, V. A., Artiukhov, A. V., Oppermann, H., Kazantsev, A. V., Lukashev, N. V., and Bunik, V. I. (2015) Mitochondrial impairment may increase cellular NAD(P)H: resazurin oxidoreductase activity, perturbing the NAD(P)H-based viability assays, Cells, 4, 427–451.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Araujo, W. L., Trofimova, L., Mkrtchyan, G., Steinhauser, D., Krall, L., Graf, A., Fernie, A. R., and Bunik, V. I. (2013) On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism, Amino Acids, 44, 683–700.

    Article  CAS  PubMed  Google Scholar 

  26. Bunik, V. I., and Fernie, A. R. (2009) Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation, Biochem. J., 422, 405–421.

    Article  CAS  PubMed  Google Scholar 

  27. Levintow, L. (1954) The glutamyltransferase activity of normal and neoplastic tissues, J. Natl. Cancer Inst., 15, 347–352.

    CAS  PubMed  Google Scholar 

  28. Mkrtchyan, G., Graf, A., Bettendorff, L., and Bunik, V. (2016) Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase, Neurochem. Int., 101, 66–75.

    Article  CAS  PubMed  Google Scholar 

  29. Graf, A., Kabysheva, M., Klimuk, E., Trofimova, L., Dunaeva, T., Zundorf, G., Kahlert, S., Reiser, G., Storozhevykh, T., Pinelis, V., Sokolova, N., and Bunik, V. (2009) Role of 2-oxoglutarate dehydrogenase in brain pathologies involving glutamate neurotoxicity, J. Mol. Catal. B Enzym., 61, 80–87.

    Article  CAS  Google Scholar 

  30. Cooper, A. J., and Jeitner, T. M. (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain, Biomolecules, 6.

    Google Scholar 

  31. Bunik, V., Mkrtchyan, G., Grabarska, A., Oppermann, H., Daloso, D., Araujo, W. L., Juszczak, M., Rzeski, W., Bettendorff, L., Fernie, A. R., Meixensberger, J., Stepulak, A., and Gaunitz, F. (2016) Inhibition of mitochondrial 2-oxoglutarate dehydrogenase impairs viability of cancer cells in a cell-specific metabolism-dependent manner, Oncotarget, 7, 26400–26421.

    PubMed  PubMed Central  Google Scholar 

  32. Xu, W., Zhu, H., Gu, M., Luo, Q., Ding, J., Yao, Y., Chen, F., and Wang, Z. (2013) DHTKD1 is essential for mitochondrial biogenesis and function maintenance, FEBS Lett., 587, 3587–3592.

    Article  CAS  PubMed  Google Scholar 

  33. Wu, Y., Williams, E. G., Dubuis, S., Mottis, A., Jovaisaite, V., Houten, S. M., Argmann, C. A., Faridi, P., Wolski, W., Kutalik, Z., Zamboni, N., Auwerx, J., and Aebersold, R. (2014) Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population, Cell, 158, 1415–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goncalves, R. L., Bunik, V. I., and Brand, M. D. (2016) Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex, Free Radic. Biol. Med., 91, 247–255.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, M., Weiss, M., Simonovic, M., Haertinger, G., Schrimpf, S. P., Hengartner, M. O., and von Mering, C. (2012) PaxDb, a database of protein abundance averages across all three domains of life, Mol. Cell. Proteom., 11, 492–500.

    Article  CAS  Google Scholar 

  36. Rindi, G., Comincioli, V., Reggiani, C., and Patrini, C. (1984) Nervous tissue thiamine metabolism in vivo. II. Thiamine and its phosphoesters dynamics in different brain regions and sciatic nerve of the rat, Brain Res., 293, 329–342.

    Article  CAS  PubMed  Google Scholar 

  37. Bunik, V., Kaehne, T., Degtyarev, D., Shcherbakova, T., and Reiser, G. (2008) Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart, FEBS J., 275, 4990–5006.

    Article  CAS  PubMed  Google Scholar 

  38. Lim, J., Liu, Z., Apontes, P., Feng, D., Pessin, J. E., Sauve, A. A., Angeletti, R. H., and Chi, Y. (2014) Dual mode action of mangiferin in mouse liver under high fat diet, PLoS One, 9, e90137.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Luong, K. V., and Nguyen, L. T. (2012) The impact of thiamine treatment in the diabetes mellitus, J. Clin. Med. Res., 4, 153–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bettendorff, L., Wirtzfeld, B., Makarchikov, A. F., Mazzucchelli, G., Frederich, M., Gigliobianco, T., Gangolf, M., De Pauw, E., Angenot, L., and Wins, P. (2007) Discovery of a natural thiamine adenine nucleotide, Nat. Chem. Biol., 3, 211–212.

    Article  CAS  PubMed  Google Scholar 

  41. Rossi-Fanelli, A., Siliprandi, N., and Fasella, P. (1952) On the presence of the triphosphothiamine (TPT) in the liver, Science, 116, 711–713.

    Article  CAS  PubMed  Google Scholar 

  42. McLure, K. G., Takagi, M., and Kastan, M. B. (2004) NAD+ modulates p53 DNA binding specificity and function, Mol. Cell. Biol., 24, 9958–9967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, S., Miriyala, S., Keaton, M. A., Jordan, C. T., Wiedl, C., Clair, D. K., and Moscow, J. A. (2014) Metabolic effects of acute thiamine depletion are reversed by rapamycin in breast and leukemia cells, PLoS One, 9, e85702.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bunik.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 6, pp. 954-969.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsepkova, P.M., Artiukhov, A.V., Boyko, A.I. et al. Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain. Biochemistry Moscow 82, 723–736 (2017). https://doi.org/10.1134/S0006297917060098

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917060098

Keywords

Navigation