Skip to main content

Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food Intake

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1265))

Abstract

Amino acids (AAs) and their metabolites play an important role in neurological health and function. They are not only the building blocks of protein but are also neurotransmitters. In the brain, glutamate and aspartate are the major excitatory neurotransmitters, whereas γ-aminobutyrate (GABA, a metabolite of glutamate) and glycine are the major inhibitory neurotransmitters. Nitric oxide (NO, a metabolite of arginine), H2S (a metabolite of cysteine), serotonin (a metabolite of tryptophan) and histamine (a metabolite of histidine), as well as dopamine and norepinephrine (metabolites of tyrosine) are neurotransmitters to modulate synaptic plasticity, neuronal activity, learning, motor control, motivational behavior, emotion, and executive function. Concentrations of glutamine (a precursor of glutamate and aspartate), branched-chain AAs (precursors of glutamate, glutamine and aspartate), L-serine (a precursor of glycine and D-serine), methionine and phenylalanine in plasma are capable of affecting neurotransmission through the syntheses of glutamate, aspartate, and glycine, as well as the competitive transport of tryptophan and tyrosine across from the blood-brain barrier. Adequate consumption of AAs is crucial to maintain their concentrations and the production of neurotransmitters in the central nervous system. Thus, the content and balance of AAs in diets have a profound impact on food intake by animals. Knowledge of AA transport and metabolism in the brain is beneficial for improving the health and well-being of humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abita JP, Dorche C, Kaufman S (1974) Further studies on the nature of phenylalanine hydroxylation in brain. Pediatr Res 8:714–717

    CAS  PubMed  Google Scholar 

  • Agster KL, Burwell RD (2009) Cortical efferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Hippocampus 19:1159–1186

    PubMed  PubMed Central  Google Scholar 

  • Ajinkya S, Nawaratna G, Hu SD, Wu G, Lubec G (2016) Decreased hippocampal homoarginine and increased nitric oxide and nitric oxide synthase levels in rats parallel training in a radial arm maze. Amino Acids 48:2197–2204

    Google Scholar 

  • Anderson ME, Meister A (1989) Marked increase of cysteine levels in many regions of the brain after administration of 2-oxothiazolidine-4-carboxylate. FASEB J 3:1632–1636

    Google Scholar 

  • André H, Jamie JF, Cooper AJ (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45:1249–1272

    Google Scholar 

  • Ashmarin IP, Antipenko AE, Ashapkin VV (1996) Neirokhimiya: uchebnik dlya biologicheskikh i meditsinskikh VUZov (Neurochemistry: Handbook for Biological and Medical Universities). Izd. Instituta Biomedkhimii RAMN, Moscow

    Google Scholar 

  • Ataseven N, Yuzbasioglu D, Keskin AC, Unal F (2016) Genotoxicity of monosodium glutamate. Food Chem Toxicol 91:8–18

    CAS  PubMed  Google Scholar 

  • Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56:1376–1386

    CAS  PubMed  Google Scholar 

  • Augustin I, Korte S, Rickmann M (2001) The cerebellum specific Munc13 isoform Munc13-3 regulates cerebellar synaptic transmission and motor learning in mice. J Neurosci 21:10–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo F, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    PubMed  Google Scholar 

  • Bagga P, Behar KL, Mason GF, De Feyter HM, Rothman DL, Patel AB (2014) Characterization of cerebral glutamine uptake from blood in the mouse brain: implications for metabolic modeling of 13C NMR data. J Cereb Blood Flow Metab 34:1666–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banay-Schwartz M, DeGuzman T, Lajtha A, Palkovits M (1996) Amino acid distribution in immature rat brain. Neurobiology (Bp) 4:393–403

    CAS  Google Scholar 

  • Bao L, Vlcek C, Paces V, Kraus JP (1998) Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms. Arch Biochem Biophys 350:95–103

    CAS  PubMed  Google Scholar 

  • Barar J, Rafi M, Mostafa PM, Yadollah O (2016) Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts 6:225–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Béard E, Braissant O (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 115:297–313

    PubMed  Google Scholar 

  • Benrabh H, Lefauconnier JM (1996) Blood-endothelial cell and blood-brain transport of L-proline, alpha-aminoisobutyric acid, and L-alanine. Neurochem Res 21:1227–1235

    CAS  PubMed  Google Scholar 

  • Berl S, Nicklas WJ, Clarke DD (1977) Glial cells and metabolic compartmentation. Pergamon Press, Oxford, pp 143–149

    Google Scholar 

  • Bernstein HG, Jäger K, Dobrowolny H, Steiner J, Keilhoff G, Bogerts B, Laube G (2015) Possible sources and functions of L-homoarginine in the brain: review of the literature and own findings. Amino Acids 47:1729–1740

    CAS  PubMed  Google Scholar 

  • Bixel G, Dringer R, Wiesinger H, Stock W, Hamprecht B (1993) Consumption of branched-chain amino acids and glycine by astroglia-rich rat brain cell cultures. Biol Chem Hoppe-Seyler 374:915

    Google Scholar 

  • Bixel M, Shimomura Y, Hutson S, Hamprecht B (2001) Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture. J Histochem Cytochem 49:407–418

    CAS  PubMed  Google Scholar 

  • Blundell JE, Leshem MB (1975) The effect of 5-hydroxytryptophan on food intake and on the anorexic action of amphetamine and fenfluramine. J Pharm Pharmol 27:31–37

    CAS  Google Scholar 

  • Blundell JE, Tombros E, Rogers PJ, Latham CJ (1980) Behavioural analysis of feeding: implications for the pharmacological manipulation of food intake in animals and man. Progr Neuro- Psychopharmacol 4:319–326

    CAS  Google Scholar 

  • Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM (1999) Selective expression of the large neutral amino acid transporter at the blood–brain barrier. Proc Natl Acad Sci USA 96:12079–12084

    CAS  PubMed  Google Scholar 

  • Boldyrev AA (2000) Functional interactions between glutamate receptors of different classes. Byul Eksp Biol Med 130:244–251

    Google Scholar 

  • Bommacanti RK, Beavan M, Ng K, Jois M (1996) Oxidation of glycine by chicken astrocytes in primary culture. J Neurochem 66(Suppl 2):S90A

    Google Scholar 

  • Boto T, Tomchik SM (2019) The excitatory, the inhibitory, and the modulatory: mapping chemical neurotransmission in the brain. Neuron 101:763–765

    CAS  PubMed  Google Scholar 

  • Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res 86:193–201

    CAS  PubMed  Google Scholar 

  • Breese GR (1975) Chemical and immunochemical lesions by specific neurotoxic substances and antisera. In: Handbook of psychopharmacology. Raven Press, New York, pp 137–189

    Google Scholar 

  • Brosnan JT, Forsey RG, Brosnan ME (1984) Uptake of tyrosine and leucine in vivo by brain of diabetic and control rats. Am J Physiol 247:C450–C453

    Google Scholar 

  • Chand N, Muhammad S, Khan RU, Alhidary IA, Rehman ZU (2016) Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress. Environ Sci Pollut Res Int 23:23930–23935

    CAS  PubMed  Google Scholar 

  • Chang Y (1977) Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem 30:347–354

    Google Scholar 

  • Chaplin ER, Goldberg AL, Diamond I (1976) Leucine oxidation in brain slices and nerve endings. J Neurochem 26:701–707

    CAS  PubMed  Google Scholar 

  • Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769–780

    CAS  PubMed  Google Scholar 

  • Chudomelka PJ, Murrin LC (1983) Transport of histidine into synaptosomes of the rat central nervous system. J Neurochem 40:830–835

    CAS  PubMed  Google Scholar 

  • Clanton R, Wu G, Akabani G, Aramayo R (2017) Control of seizures by ketogenic diet-induced modulation of metabolic pathways. Amino Acids 47:1–20

    Google Scholar 

  • Clineschmidt BV, Mcguffin JC, Pfluefer AB, Totaro JA (1978) A 5-hydroxytryptamineqike mode of anorectic action for 6-chloro-2-(l-piperazinyl)-pyrazine (Mk-212). Br J Pharmacol 62:579–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7:a020412

    PubMed  PubMed Central  Google Scholar 

  • Daniel RG, Waisman HA (1969) The influence of excess methionine on the free amino acids of brain and liver of the weanling rat. J Neurochem 16:787–795

    CAS  PubMed  Google Scholar 

  • Dasgupta K, Jeong J (2019) Developmental biology of the meninges. Genesis 57:e23288

    PubMed  PubMed Central  Google Scholar 

  • Dingledine R, McBain CJ (1999) Glutamate and aspartate are the major excitatory transmitters in the brain. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven Publishers, Philadelphia, pp 315–333

    Google Scholar 

  • DiNicolantonio JJ, McCarty MF, OKeefe JH (2018) Role of dietary histidine in the prevention of obesity and metabolic syndrome. Open Heart 5:e000676

    PubMed  PubMed Central  Google Scholar 

  • Dringen R, Hamprecht B (1996) Glutathione content as an indicator for the presence of metabolic pathways of amino acids in astroglial cultures. J Neurochem 67:1375–1382

    CAS  PubMed  Google Scholar 

  • Dringen R, Verleysdonk S, Hamprecht B, Willker W, Leibfritz D, Brand A (1998) Metabolites of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem 70:835–840

    Google Scholar 

  • During MJ, Acworth IN, Wurtman RJ (1988) Effects of systemic tyrosine on dopamine release from rat corpus striatum and nucleus accumbens. Brain Res 452:378–380

    CAS  PubMed  Google Scholar 

  • Dutta S, Sinha S, Chattopadhyay A, Gangopadhyay PK, Mukhopadhyay J, Singh M, Mukhopadhyay K (2005) Cystathionine beta-synthase T833C/844INS68 polymorphism: a family-based study on mentally retarded children. Behav Brain Funct 1:25

    PubMed  PubMed Central  Google Scholar 

  • Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19:1854–1856

    CAS  PubMed  Google Scholar 

  • Erecinska M, Nelson D, Daikhin Y, Yudkoff M (1996) Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium and ketone bodies. J Neurochem 67:2325–2334

    CAS  PubMed  Google Scholar 

  • Feenstra MGP, der Plasse G (2010) Tryptophan depletion and serotonin release -A critical reappraisal. In: Handbook of behavioral neuroscience, vol 21. Elsevier, pp 249–258

    Google Scholar 

  • Fernando-Valenzuela C, Puglia MP, Zucca S (2011) Focus on: neurotransmitter systems. Alcohol Res Health 34:106–120

    Google Scholar 

  • Fernstrom JD (1990) Aromatic amino acids and monoamine synthesis in the central nervous system: influence of the diet. J Nutr Biochem 1:508–517

    CAS  PubMed  Google Scholar 

  • Fernstrom JD (1994) Dietary amino acids and brain function. J Am Diet Assoc 94:71–77

    Google Scholar 

  • Fernstrom JD (2013) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 45:419–430

    Google Scholar 

  • Feurte S, Nicolaidis S, Even PC, Tome D, Mahe S, Fromentin G (1999) Rapid fall in plasma threonine followed by increased intermeal interval in response to first ingestion of a threonine-devoid diet in rats. Appetite 3:329–341

    Google Scholar 

  • Fibiger HC, Zis AP, Mcgeer EG (1973) Feeding and drinking deficits after 6-hydroxydopamine administration in the rat: similarities to the lateral hypothalamic syndrome. Brain Res 55:135–148

    CAS  PubMed  Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    CAS  PubMed  Google Scholar 

  • Freeman J, Veggiotti P, Lanzi G, Tagliabue A, Perucca E (2006) The ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Res 68:145–180

    CAS  PubMed  Google Scholar 

  • Gaull GE, Tallan HH, Lajtha A, Rassin DK (1975) Biology of brain dysfunction, vol 3 (Gaull GE ed). Plenum Press, New York, pp 47–143

    Google Scholar 

  • Gibson CJ (1986) Dietary control of retinal dopamine synthesis. Brain Res 382:195–198

    CAS  PubMed  Google Scholar 

  • Gietzen DW, Magrum LJ (2001) Molecular mechanisms in the brain involved in the anorexia of branched-chain amino acid deficiency. J Nutr 131:851S–855S

    CAS  PubMed  Google Scholar 

  • Goldman HW, Lehr D, Friedman E (1971) Antagonistic effects of alpha and beta-adrenergically coded hypothalamic neurones on consummatory behaviour in the rat. Nature 231:453–455

    CAS  PubMed  Google Scholar 

  • Gotoh K, Masaki T, Chiba S (2009) Hypothalamic neuronal histamine signaling in the estrogen deficiency-induced obesity. J Neurochem 110:1796–1805

    CAS  PubMed  Google Scholar 

  • Goudie AJ, Thornton EW, Wheeler TJ (1976) Effects of Lilly 110140, a specific inhibitor of 5-hydroxytryptamine uptake, on food intake and on 5-hydroxytryptophan-induced anorexia. Evidence for serotoninergic inhibition of feeding. J Pharm Pharmacol 28:318–320

    CAS  PubMed  Google Scholar 

  • Gupta N, Jing Y, Collie ND, Zhang H, Liu P (2012) Ageing alters behavioural function and brain arginine metabolism in male Sprague-Dawley rats. Neurosci 226:178–196

    CAS  Google Scholar 

  • Gutierrez MD, Giacobini E (1985) Identification and characterization of pipecolic acid binding sites in mouse brain. Neurochem Res 10:691–702

    CAS  PubMed  Google Scholar 

  • Halaris A, Piletz J (2007) Agmatine: metabolic pathway and spectrum of activity in brain. CNS Drugs 21:885–900

    CAS  PubMed  Google Scholar 

  • Hall TR, Wallin R, Reinhart GD, Hutson SM (1993) Branched-chain aminotransferase isoenzymes. Purification and characterization of the rat brain isoenzyme. J Biol Chem 268:3092–3098

    CAS  PubMed  Google Scholar 

  • Hallen A, Jamie JF, Cooper AJ (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45:1249–1272

    Google Scholar 

  • Hamberger A, Cotman CW, Sellstrom A, Weiler CT (1977) Glutamine, glial cells and their relationship to transmitter glutamate. In: Dynamic properties of glia cells (Schoffeniels E ed). Pergamon Press, Oxford, pp 163–172

    Google Scholar 

  • Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Annu Rev Nutr 4:409–454

    CAS  PubMed  Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Viña JR (2006) Structure of the blood–brain barrier and its role in the transport of amino acids. J Nutr 136:218S–226S

    CAS  PubMed  Google Scholar 

  • Haymond MW, Ben-Galim E, Strobel KE (1978) Glucose and alanine metabolism in children with maple syrup urine disease. J Clin Invest 78:398–405

    Google Scholar 

  • Hayes KC, Sturman JA (1981) Taurine in metabolism. Annu Rev Nutr 1:401–425

    Google Scholar 

  • He WL, Furukawa K, Leyva-Jimenez H, Bailey CA, Wu G (2018) Oxidation of energy substrates by enterocytes of 0- to 42-day-old chickens. Poult Sci 97(E-Suppl. 1):3

    Google Scholar 

  • Hediger MA, Welbourne TC (1999) Introduction: glutamate transport, metabolism, and physiological responses. Am J Phys 277:F477–F480

    Google Scholar 

  • Hellier J (2014) The brain, the nervous system, and their diseases. ABC-Clio, Santa Barbara

    Google Scholar 

  • Holopainen I, Kontro P (1989) Uptake and release of glycine in cerebellar granule cells and astrocytes in primary culture: potassium stimulated release from granule cells is calcium dependent. J Neurosci Res 24:373–383

    Google Scholar 

  • Holt S, Brand-Miller JC, Petocz P (1996) Interrelationship among post-prandial satiety, glucose and insulin responses and changes in susquent food intake. Eur J Clin Nutr 50:788–797

    CAS  PubMed  Google Scholar 

  • Holten AT, Gundersen V (2008) Glutamine as a precursor for transmitter glutamate, aspartate and GABA in the cerebellum: a role for phosphate-activated glutaminase. J Neurochem 104:1032–1042

    CAS  PubMed  Google Scholar 

  • Hosoya K, Sugawara M, Asaba H, Terasaki T (1999) Blood-brain barrier produces significant efflux of L-aspartic acid but not D-aspartic acid: in vivo evidence using the brain efflux index method. J Neurochem 73:1206–1211

    CAS  PubMed  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015b) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Google Scholar 

  • Hou YQ, Yao K, Yin YL, Wu G (2016b) Endogenous synthesis of amino acids limits growth, lactation and reproduction of animals. Adv Nutr 7:331–342

    Google Scholar 

  • Hou YQ, Wu G (2018) L-Glutamate nutrition and metabolism in swine. Amino Acids 50:1497–1510

    CAS  PubMed  Google Scholar 

  • Hou YQ, Jia SC, Nawaratna G, Hu SD, Dahanayaka S, Bazer FW, Wu G (2015a) Analysis of L-homoarginine in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-L-cysteine. Amino Acids 47:2005–2014

    CAS  PubMed  Google Scholar 

  • Hou YQ, Hu SD, Jia SC, Nawaratna G, Che DS, Wang FL, Bazer FW, Wu G (2016a) Whole-body synthesis of L-homoarginine in pigs and rats supplemented with L-arginine. Amino Acids 48:993–1001

    CAS  PubMed  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    CAS  PubMed  Google Scholar 

  • Hutson SM, Lieth E, LaNoue KF (2001) Function of leucine in excitatory neurotransmitter metabolism in the central nervous system. J Nutr 131:846S–850S

    CAS  PubMed  Google Scholar 

  • Jia SC, Li XY, Zheng SX, Wu G (2017) Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids 49:2053–2063

    CAS  PubMed  Google Scholar 

  • Jobgen WJ, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB, Spencer TE, Fried SK, Wu G (2009) Dietary L-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JL, Roberts E (1984) Arginine metabolism in mouse brain synaptosomes. J Neurochem 42:1123–1126

    CAS  PubMed  Google Scholar 

  • Jørgensen EA, Vogelsang TW, Knigge U (2006) Increased susceptibility to diet-induced obesity in histamine-deficient mice. Neuroendocrinology 83:289–294

    Google Scholar 

  • Joyce D, Mrosovsky N (1964) Eating, drinking and activity in rats following 5-hydroxytryptophan (5-HTP) administration. Psychopharmacologia 5:417–423

    CAS  PubMed  Google Scholar 

  • Kakee A, Takanaga H, Terasaki T, Naito M, Tsuruo T, Sugiyama Y (2001) Efflux of a suppressive neurotransmitter, GABA, across the blood brain barrier. J Neurochem 79:110–118

    CAS  PubMed  Google Scholar 

  • Kontro P, Marnela KM, Oja SS (1980) Free amino acids in the synaptosome and synaptic vesicle fractions of different bovine brain areas. Brain Res 184:129–141

    Google Scholar 

  • Kanamori K, Ross BD, Kondrat RW (1998) Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15N NMR. J Neurochem 70:1304–1315

    CAS  PubMed  Google Scholar 

  • Karobath M, Baldessarini RJ (1972) Formation of catechol compounds from phenylalanine and tyrosine with isolated nerve endings. Nat New Biol 236:206–208

    CAS  PubMed  Google Scholar 

  • Kasaoka S, Tsuboyama-Kasaoka N, Kawahara Y (2004) Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition 20:991–996

    CAS  PubMed  Google Scholar 

  • Kashiwamata S, Greenberg DM (1970) Studies on cystathionine synthase of rat liver. Properties of the highly purified enzyme. Biochim Biophys Acta 212:488–500

    CAS  PubMed  Google Scholar 

  • Kashiwamata S, Kotake Y, Greenberg DM (1970) Studies of cystathionine synthase of rat liver: dissociation into two components by sodium dodecyl sulfate disc electrophoresis. Biochim Biophys Acta 212:501–503

    CAS  PubMed  Google Scholar 

  • Kaufman S, Kaufman EE (1985) Tyrosine hydroxylase. In: Folates and pterins, Chemistry and biochemistry of the pterins, vol 2 (Blakley RL, Benkovic SJ eds). Wiley, New York, pp 251–352

    Google Scholar 

  • Kelly J, Alheid GF, Newberg A, Grossman SP (1977) GABA stimulation and blockade in the hypothalamus and midbrain: effects on feeding and locomotor activity. Pharmacol Biochem Behav 7:537–541

    CAS  PubMed  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE (2005) A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol 493:72–85

    Google Scholar 

  • Kranich O, Hamprecht B, Dringen R (1996) Different preferences in the utilization of amino acids for glutathione synthesis in cultured neurons and astroglial cells derived from rat brain. Neurosci Left 219:211–214

    CAS  Google Scholar 

  • Kubo Y, Ohtsuki S, Uchida Y (2015) Quantitative determination of luminal and abluminal membrane distributions of transporters in porcine brain capillaries by plasma membrane fractionation and quantitative targeted proteomics. J Pharm Sci 104:3060–3068

    CAS  PubMed  Google Scholar 

  • Kuriyama K, Sze PY (1971) Blood–brain barrier to H3-γ-aminobutyric acid in normal and amino oxyacetic acid-treated animals. Neuropharmacology 10:103–108

    CAS  PubMed  Google Scholar 

  • Lam DD, Garfield AS, Marston OJ, Shaw J, Heisler LK (2010) Brain serotonin system in the coordination of food intake and body weight. Pharmacol Biochem Behav 97:84–91

    CAS  PubMed  Google Scholar 

  • Langen KJ, Hamacher K, Bauer D, Bröer S, Pauleit D, Herzog H, Floeth F, Zilles K, Coenen HH (2005) Preferred stereoselective transport of the D-isomer of cis-4-[18F]fluoro-proline at the blood–brain barrier. J Cerebral Blood Flow Metab 25:607–616

    CAS  Google Scholar 

  • Lee WJ, Hawkins RA, Vina JR, Peterson DR (1998) Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am J Phys 274:1101–1107

    Google Scholar 

  • Le Douce J et al. (2020) Impairment of glycolysis-derived L-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab 31:503–517

    Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Google Scholar 

  • Leibowitz SF, Rossakis C (1978) Analysis of feeding suppression produced by perifornical hypo- thalamic injection of catecholamines, amphetamines and mazindol. Eur J Pharmacol 53:69–81

    CAS  PubMed  Google Scholar 

  • Leibowitz SF, Rossakis C (1979) Mapping study of brain dopamine- and epinephrine-sensitive sites which cause feeding suppression in the rat. Brain Res 172:101–113

    CAS  PubMed  Google Scholar 

  • Leitch B, Shevtsova O, Reusch K, Bergin DH, Liu P (2011) Spatial learning-induced increase in agmatine level sathippocampal CA1 synapses. Synapse 65:146–153

    CAS  PubMed  Google Scholar 

  • Li P, Knabe DA, Kim SW, Lynch CJ, Hutson SM, Wu G (2009a) Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139:1502–1509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XL, Bazer FW, Gao H, Jobgen W, Johnson GA, Li P, McKnight JR, Satterfield MC, Spencer TE, Wu G (2009b) Amino acids and gaseous signaling. Amino Acids 37:65–78

    PubMed  Google Scholar 

  • Li XL, Zheng SX, Wu G (2020) Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52:671–691

    Google Scholar 

  • Liang HW, Dai ZL, Ma XS, Liu N, Ji Y, Chen JQ, Zhang YC, Yang Y, Li J, Wu ZL, Wu G (2018) Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets. Front Microbiol 9:1736

    PubMed  PubMed Central  Google Scholar 

  • Liu P, Collie ND, Chary S, Jing Y, Zhang H (2008) Spatial learning results in elevated agmatine levels in the rat brain. Hippocampus 18:1094–1098

    PubMed  Google Scholar 

  • Liu P, Jing Y, Zhang H (2009) Age-related changes in arginine and its metabolites in memory-associated brain structures. Neurosci 164:611–628

    CAS  Google Scholar 

  • Malaterre J, Strambi C, Aouane A, Strambi A, Rougon G, Cayre M (2004) A novel role for polyamines in adult neurogenesis in rodent brain. Eur J Neurosci 20:317–330

    PubMed  Google Scholar 

  • Mazlan M, Hamezah HS, Taridi NM, Jing Y, Liu P, Zhang H, Ngah WZW, Damanhuri HA (2017) Effects of aging and tocotrienol-rich fraction supplementation on brain arginine metabolism in rats. Oxidative Med Cell Longev 2017:6019796

    Google Scholar 

  • McKay BE, Lado WE, Martin LJ, Galic MA, Fournier NM (2002) Learning and memory in agmatine-treated rats. Pharmacol Biochem Behavior 72:551–557

    CAS  Google Scholar 

  • McNeal CJ, Meininger CJ, Wilborn CD, Tekwe CD, Wu G (2018) Safety of dietary supplementation with arginine in adult humans. Amino Acids 50:1215–1229

    Google Scholar 

  • McTavish SFB, Cowen PJ, Sharp T (1999) Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology 141:182–188

    CAS  PubMed  Google Scholar 

  • Michael FS (1987) Neuropharmacology of drugs affecting food intake. Pharmacol Therap 32:145–182

    Google Scholar 

  • Moreno-Delgado D, Torrent A, Gómez-Ramírez J, Esch I, Blanco I, Ortiz J (2006) Constitutive activity of H3 autoreceptors modulates histamine synthesis in rat brain through the cAMP/PKA pathway. Neuropharmacology 51:517–523

    CAS  PubMed  Google Scholar 

  • Morens C, Bos C, Pueyo ME, Renamouzig R, Gausscercs N, Luengo C, Tome D, Gaudichon C (2003) Increasing habitual protein intake accentuates differences in postprandial dietary nitrogen utilization between protein sources in humans. J Nutr 133:2733–2740

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917

    CAS  PubMed  Google Scholar 

  • Neinast M, Murashige D, Arany Z (2019) Branched chain amino acids. Annu Rev Physiol 81:139–164

    CAS  PubMed  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    CAS  PubMed  Google Scholar 

  • Olney JW (2003) Excitotoxicity, apoptosis and neuropsychiatric disorders. Curr Opin Pharmacol 3:101–109

    CAS  PubMed  Google Scholar 

  • Palkovits M, Saavedra JM, Jacobowitz DM, Kizer JS, Zaborszky L, Brownstein MJ (1977) Serotonergic innervation of the forebrain: effect of lesions on serotonin and tryptophan hydroxylase levels. Brain Res 130:121–134

    CAS  PubMed  Google Scholar 

  • Perry TL, Berry K, Hansen S, Diamond S, Mok C (1971) Regional distribution of amino acids in human brain obtained at autopsy. J Neurochem 18:513–519

    CAS  PubMed  Google Scholar 

  • Perry TL, Sanders HD, Hansen S, Lesk D, Kloster M, Gravlin L (1972) Free amino acids and related compounds in five regions of biopsied cat brain. J Neurochem 19:2651–2656

    CAS  PubMed  Google Scholar 

  • Pey AL, Majtan T, Sanchez-Ruiz JM, Kraus JP (2013) Human cystathionine beta-synthase (CBS) contains two classes of binding sites for S-adenosyl-L-methionine (SAM): complex regulation of CBS activity and stability by SAM. Biochem J 449:109–121

    CAS  PubMed  Google Scholar 

  • Pogson CI, Knowles RG, Salter M (1989) The control of aromatic amino acid catabolism and its relationship to neurotransmitter amine synthesis. Crit Rev Neurobiol 5:29–64

    CAS  PubMed  Google Scholar 

  • Porter TG, Martin DL (1984) Evidence for feedback regulation of glutamate decarboxylase by γ- aminobutyric acid. J Neurochem 43:1464–1467

    CAS  PubMed  Google Scholar 

  • Porter TG, Martin DL (1987) Rapid inactivation of brain glutamate decarboxylase by aspartate. J Neurochem 48:67–72

    CAS  PubMed  Google Scholar 

  • Raevskii KS (1986) Mediator amino acids: neuropharmacological and neurochemical aspects. Moscow, Meditsina

    Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD, Dahanayaka S, Ficken MD, Fielder SE, Eide SJ, Lovering SL, Wu G (2013) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    CAS  PubMed  Google Scholar 

  • Roland P, Silvana O, Eduard AS, Alfred V, Heribert M, Georg FH, Stefan K, Sven WS, Jürgen GO (2015) Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I. J Inherit Metab Dis 38:265–272

    Google Scholar 

  • Ronnberg AL, Schwartz J-C (1969) Regional distribution of histamine in the rat brain. C R Acad Sci Hebd Seances Acad Sci D 268:2376–2379

    CAS  PubMed  Google Scholar 

  • Rubin RA, Ordonez LA, Wurtman RJ (1974) Physiological dependence of brain methionine and S-adenosylmethionine concentrations on serum amino acid pattern. J Neurochem 1:227–231

    Google Scholar 

  • Rushaidhi M, Jing Y, Kennard J (2012) Aging affects L-arginine and its metabolites in memory-associated brain structures at the tissue and synaptoneurosome levels. Neuroscience 209:21–31

    CAS  PubMed  Google Scholar 

  • Saavedra JM, Palkovits M, Brownstein MJ, Axelrod J (1974) Serotonin distribution in the nuclei of the rat hypothalamus and preoptic region. Brain Res 77:157–165

    CAS  PubMed  Google Scholar 

  • Sase A, Dahanayaka S, Höger H, Wu G, Lubec G (2013) Changes of hippocampal β-alanine and citrulline levels parallel early and late phase of retrieval in the Morris water maze. Behav Brain Res 249:104–108

    CAS  PubMed  Google Scholar 

  • Sato K, Yoshida S, Fujiwara K, Tada K, Tohyama M (1991) Glycine cleavage system in astrocytes. Brain Res 567:64–70

    CAS  PubMed  Google Scholar 

  • Scheppach W, Pomare EW, Elia M, Cummings JH (1991) The contribution of the large intestine to blood acetate in man. Clin Sci 80:177–182

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Caplan D (2006) Cognition, emotion and the cerebellum. Brain 6129:290–292

    Google Scholar 

  • Schousboe A (2000) Pharmacologic and functional characterization of astrocytic GABA transport: a short review. Neurochem Res 25:1241–1244

    CAS  PubMed  Google Scholar 

  • Schutter DJ, van Honk J (2005) The cerebellum on the rise in human emotion. Cerebellum 4:290–294

    PubMed  Google Scholar 

  • Schwartz JC, Lampart C, Rose C (1970) Properties and regional distribution of histidine decarboxylase in rat brain. J Neurochem 17:1527–1534

    CAS  PubMed  Google Scholar 

  • Self JT, Spencer TE, Johnson GA, Hu J, Bazer FW, Wu G (2004) Glutamine synthesis in the developing porcine placenta. Biol Reprod 70:1444–1451

    CAS  PubMed  Google Scholar 

  • Senkowska A, Ossowska K (2003) Role of metabotropic glutamate receptors in animal models of Parkinson’s disease. Pol J Pharmacol 55:935–950

    CAS  PubMed  Google Scholar 

  • Shambaugh GE, Koehler RA (1981) Fetalfuels. IV. Regulation of branched-chain amino and keto acid metabolism in fetal brain. Am J Phys 241:E200–E207

    CAS  Google Scholar 

  • Shambaugh GE, Koehler RA (1983) Fetal fuels VI. Metabolism of a-ketoisocaproic acid in fetal rat brain. Metabolism 32:421–427

    CAS  PubMed  Google Scholar 

  • Shaw RK, Heine JD (1965) Ninhydrin positive substances present in different areas of normal rat brain. J Neurochem 12:151–155

    CAS  PubMed  Google Scholar 

  • Sherif F, Oreland L (1992) Studies on gamma-aminobutyrate aminotransferase (GABA-T) activities in human and rodent brain homogenates. Arch Int Physiol Biochem 100:361–367

    CAS  Google Scholar 

  • Shigemi K, Tomonaga S, Uotsu N, Denbow M, Furuse M (2015) Oral administration of L-serine modifies amino acid metabolism in the brain of rats. J Anim Nutr 1:1–7

    Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci U S A 94:2699–2704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer G, Sanghvi I, Gershon S (1971) Exploration of certain behavioral patterns induced by psychoactive agents in the rat. Commun Behav Biol 6:307–312

    Google Scholar 

  • Smith QR (2000) Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 130(Suppl 4S):1016S–1022S

    CAS  PubMed  Google Scholar 

  • Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    CAS  PubMed  Google Scholar 

  • Snyder SH (2017) A life of neurotransmitters. Annu Rev Pharmacol Toxicol 57:1–11

    CAS  PubMed  Google Scholar 

  • Sperringer JE, Addington A, Hutson SM (2017) Branched-chain amino acids and brain metabolism. Neurochem Res 42:1697–1709

    CAS  PubMed  Google Scholar 

  • Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    CAS  PubMed  Google Scholar 

  • Storm-Mathisen J, Ottersen OP, Fu-Long T, Gundersen V, Laake JH, Nordbø G (1986) Metabolism and transport of amino acids studied by mmunocytochemistry. Med Biol 64:127–132

    CAS  PubMed  Google Scholar 

  • Sugrue MF, Mireylees SE (1978) Effects of mazindol on rat brain synaptosomal monoamine uptake. Biochem Pharmacol 27:1843–1847

    CAS  PubMed  Google Scholar 

  • Takanaga H, Tokuda N, Ohtsuki S, Hosoya K, Terasaki T (2002) ATA2 is predominantly expressed as system A at the blood-brain barrier and acts as brain-to-blood efflux transport for L-proline. Mol Pharmacol 61:1289–1296

    CAS  PubMed  Google Scholar 

  • Tallan HH, Moore S, Stein WH (1958) L-cystathionine in human brain. J Biol Chem 230:707–716

    CAS  PubMed  Google Scholar 

  • Tews JK, Rogers QR, Morris JG, Harper AE (1984a) Effect of dietary protein and GABA on food intake, growth and tissue amino acids in cats. Physiol Behav 32:301–308

    CAS  PubMed  Google Scholar 

  • Thompson JR, Wu G (1991) The effect of ketone bodies on nitrogen metabolism in skeletal muscle. Comp Biochem Physiol 100B:209–216

    CAS  Google Scholar 

  • Tran PV, Chowdhury VS, Furuse M (2019) Central regulation of feeding behavior through neuropeptides and amino acids in neonatal chicks. Amino Acids 51:1129–1152

    CAS  PubMed  Google Scholar 

  • Trujillo-Estrada L, Gomez-Arboledas A, Forner S, Martini AC, Gutierrez A, Baglietto-Vargas D, LaFerla FM (2019) Astrocytes: from the physiology to the disease. Curr Alzheimer Res 16:675–698

    CAS  PubMed  Google Scholar 

  • Tews JK, Rogers QR, Morris JG, Harper AE (1984b) Effect of dietary protein and GABA on food intake, growth and tissue amino acids in cats. Physiol Behav 32:301–308

    CAS  PubMed  Google Scholar 

  • Van den Berg CJ, Matheson DF, Nijemanting WC (1978) Compartimentation of amino acids in brain: the GABA glutamine-glutamate cycle. In: Fonnum F (ed) Amino acids and chemical transmitters. Plenum Press, New York, pp 709–723

    Google Scholar 

  • Vitvitsky V, Garg SK, Banerjee R (2011) Taurine biosynthesis by neurons and astrocytes. J Biol Chem 286:32002–32010

    Google Scholar 

  • Verkhratsky A, Ho MS, Zorec R, Parpura V (2019) The concept of neuroglia. Adv Exp Med Biol 1175:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524:3865–3895

    Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (1999) Synthesis of vesicular GABA from glutamine involves TCA cycle metabolism in neocortical neurons. J Neurosci Res 57:342–349

    CAS  PubMed  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waxman EA, Lynch DR (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11:37–49

    CAS  PubMed  Google Scholar 

  • Westergaard N, Sonnewald U, Schousboe A (1995) Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited. Dev Neurosci 17:203–211

    CAS  PubMed  Google Scholar 

  • Wilder RM (1921) Effects of ketonuria on the course of epilepsy. Mayo Clin Bull 2:307–310

    Google Scholar 

  • Wilkins L (1937) Epilepsy in childhood. III results with the ketogenic diet. J Pediatr 10:341–357

    Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    CAS  PubMed  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G et al. (2013) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Cross HR, Gehring KB, Savell JW, Arnold AN, McNeill SH (2016) Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. J Anim Sci 94:2603–2613

    CAS  PubMed  Google Scholar 

  • Wu G (2020) Important roles of dietary taurine, creatine, carnosine, anserine and hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneda Y, Roberts E (1982) A new synaptosomal biosynthetic pathway of proline from ornithine and its negative feedback inhibition by proline. Brain Res 239:479–488

    CAS  PubMed  Google Scholar 

  • Yoneda Y, Roberts E, Dietz GW Jr (1982) A new synaptosomal biosynthetic pathway of glutamate and GABA from ornithine and its negative feedback inhibition by GABA. J Neurochem 38:1686–1694

    CAS  PubMed  Google Scholar 

  • Yoneda K, Byori R (2001) Aspartate aminotransferase (glutamic oxalacetic transaminase) and alanine aminotransferase (glutamic pyruvic transaminase). Rinsho Byori 116(Suppl):72–80

    CAS  PubMed  Google Scholar 

  • Yoshimatsu H, Itateyama E, Kondou S (1999) Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes 48:2286–2291

    CAS  PubMed  Google Scholar 

  • Yoshimatsu H, Chiba S, Tajima D (2002) Histidine suppresses food intake through its conversion into neuronal histamine. Exp Biol Med 227:63–68

    CAS  Google Scholar 

  • Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21:92–98

    CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I (2001) Ketogenic diet, amino acid metabolism and seizure control. J Neurosci Res 66:931–940

    Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I (2005) Brain amino acid requirements and toxicity: The example of leucine. J Nutr 135:1531S–1538S

    CAS  PubMed  Google Scholar 

  • Zeisel SH, Wurtman RJ (1979) Dietary intake of methionine: influence on brain S-adenosylmethionine. In: Usdin E, Borchardt RT, Creveling CR (eds) Transmethylation. Elsevier/North Holland, New York, pp 59–68

    Google Scholar 

Download references

Acknowledgments

We thank students and research assistants in our laboratory for helpful discussions. Work in our laboratory is supported by Texas AgriLife Research Hatch project H-8200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, W., Wu, G. (2020). Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food Intake. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1265. Springer, Cham. https://doi.org/10.1007/978-3-030-45328-2_10

Download citation

Publish with us

Policies and ethics