Skip to main content
Log in

Supra-additive activation of guinea-pig superior cervical ganglion adenylate cyclase by PGE2 andd-Ala2-Met-enkephalinamide: Role of GTP

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of guanine nucleotides were tested on basal and agonist-modulated adenylate cyclase in guinea-pig superior cervical ganglion crude membrane preparations. GTPγS and Gpp(NH)p dose-dependently stimulate, while GDPβS inhibits, both the basal and the prostaglandin E2-stimulated enzyme activity. Low GTP doses, up to 10−5M, stimulate, while higher doses inhibit, the ganglionic adenylate cyclase. The GTP-induced diphasic pattern is maintained also in the presence of prostaglandin E2,d-Ala2-Met-enkephalinamide, or a combination of the two drugs. However, the opioid inhibits the enzyme activity, but only at high GTP doses, while the prostaglandin stimulates the enzyme at all GTP concentrations. The effect is potentiated by a combination of prostaglandin and enkephalin. The enhancing effect of the prostaglandin and of the combination with enkephalin is maximally expressed at high, almost physiological, GTP doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilman, A. G. 1987. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56:615–649.

    PubMed  Google Scholar 

  2. Asano, T., Pedersen, S. E., Scott, C. W., and Ross, E. M. 1984. Reconstitution of catecholamine-stimulated binding of guanosine 5′-0-(3-Thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase. Biochemistry 23:5460–5467.

    PubMed  Google Scholar 

  3. Narayanan, N., Lussier, B., French, M., Moore, B., and Kraicer, J. 1989. Growth hormone-releasing factor-sensitive adenylate cyclase system of purified somatotrophs: effects of guanine nucleotides, somatostatin, calcium, and magnesium. Endocrinology 124:484–495.

    PubMed  Google Scholar 

  4. Bockaert, J., Cantau, B., and Sebben-Perez, M. 1984. Hormonal inhibition of adenylate cyclase: a crucial role for Mg2+. Mol. Pharmacol. 26:180–186.

    PubMed  Google Scholar 

  5. Yamazaki, A., and Bitensky, M. W. 1987. The GTP-binding protein of rod outer segments. II. An essential role for Mg2+ in signal amplification. J. Biol. Chem. 262:9324–9331.

    PubMed  Google Scholar 

  6. Lipson, K. E., Kolhatkar, A. A., Maki, R. G., and Donner, D. B. 1988. Divalent cations regulate glucagon binding. Evidence for actions on receptor-Ns complexes and on receptors uncoupled from Ns. Biochemistry 27:1111–1116.

    PubMed  Google Scholar 

  7. Ferretti, M. E., Borasio, P. G., Biondi, C., Capuzzo, A., Fabbri, E., and Pareschi, M. C. 1988. Interactions between prostaglandin E2 and D-Ala2-Met-enkephalinamide on adenylate cyclase activity in the guinea-pig superior cervical ganglion. Neurochem. Res. 13:797–802.

    PubMed  Google Scholar 

  8. Borasio, P. G., Biondi, C., Capuzzo, A., and Ferretti, M. E. 1986. Opiates modulation of cAMP levels and PGE2 binding in mammalian sympathetic ganglia. Neurosci. Lett. 66:7–12.

    PubMed  Google Scholar 

  9. Borasio, P. G., Biondi, C., Ferretti, M. E., Fabbri, E., and Pareschi, M. C. 1989. Supra-additive stimulation of adenylate cyclase activity by prostaglandin E2 and D-Ala2-Met-enkephalinanide in the guinea-pig superior cervical ganglion: role of Mg2+ ions. Neurochem. Res. 14:1181–1186.

    PubMed  Google Scholar 

  10. Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L., and Greengard, P. 1974. Characterization of a dopamine-sensitive adenyl cyclase in rat caudate nucleus. J. Neurochem. 25:143–149.

    Google Scholar 

  11. Brown, B. L., Ekins, R. P., and Albano, J. D. M. 1972. Saturation assay for cyclic AMP using endogenous binding protein. Pages 25–40,in Greengard, P., Robison, G., and Paoletti, R. (eds.), Adv. Cyclic Nucleotide Res., Vol. 2, Raven Press, New York.

    Google Scholar 

  12. Tomasi, V., Biondi, C., Trevisani, A., Martini, M., and Perri, V. 1977. Modulation of cyclic AMP levels in the bovine superior cervical ganglion by prostaglandin E1 and dopamine. J. Neurochem. 28:1289–1297.

    PubMed  Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  14. Rodbell, M., Lin, M. C., Salomon, Y., Londos, C., Harwood, J. P., Martin, B. R., Rendell, M., and Berman, M. 1975. Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: evidence for multisite transition states. Pages 3–29,in Drummond, G. I., Greengard, P., and Robison, G. A. (eds.), Adv. Cyclic Nucleotide Res., Vol. 5, Raven Press, New York.

    Google Scholar 

  15. Eckstein, F., Cassel, D., Levkovitz, H., Lowe, M., and Selinger, Z. 1979. Guanosine 5′-0-(2-Thiodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J. Biol. Chem. 254:9829–9834.

    PubMed  Google Scholar 

  16. Arima, T., Segawa, T., and Nomura, Y. 1986. Influence of pertussis toxin on the effects of guanine nucleotide on adenylate cyclase activity in rat striatum. Mol. Pharmacol. 28:138–145.

    Google Scholar 

  17. Perez-Reyes, E., and Cooper, D. M. F. 1986. Interaction of the inhibitory GTP regulatory component with soluble cerebral cortical adenylate cyclase. J. Neurochem. 46:1508–1516.

    PubMed  Google Scholar 

  18. Spigel, A. M., and Aurbach, G. D. 1974. Binding of 5′-guanylylimidodiphosphate to turkey erythrocyte membranes and effects on β-adrenergic-activated adenylate cyclase. J. Biol. Chem. 249:7630–7636.

    PubMed  Google Scholar 

  19. Rasenick, M. M., Hughes, J. M., and Wang, N. 1989. Guanosine-5′-O-Thiodiphosphate functions as a partial agonist for the receptor-independent stimulation of neural adenylate cyclase. Brain Res. 488:105–113.

    PubMed  Google Scholar 

  20. Burns, D. L., Hewlett, E. L., Moss, J., and Vaughan, N. 1983. Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108-15 cells. J. Biol. Chem. 258:1435–1438.

    PubMed  Google Scholar 

  21. Cerione, R. A., Staniszewski, C., Caron, M. G., Lefkowitz, R. J., Codina, J., and Birnbaumer, L. 1985. A role for Ni in the hormonal stimulation of adenylate cyclase. Nature 318:293–295.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biondi, C., Borasio, P.G., Ferretti, M.E. et al. Supra-additive activation of guinea-pig superior cervical ganglion adenylate cyclase by PGE2 andd-Ala2-Met-enkephalinamide: Role of GTP. Neurochem Res 15, 785–789 (1990). https://doi.org/10.1007/BF00968555

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968555

Key Words

Navigation