Skip to main content
Log in

The effects of monoamine oxidase B inhibition on dopamine metabolism in rats with nigro-striatal lesions

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine whether monoamine oxidase type B (MAO-B) has a role in striatal dopamine metabolism in animals with a unilateral lesion of the medial forebrain bundle, and whether 2-phenylethylamine (PE) could have a role in amplification of dopamine (DA) responses in DA depleted striatum. Inhibition of MAO-B did not alter DA metabolism in lesioned striata. PE accumulation decreased with loss of DA as long as there was no DA dysfunction. In lesioned striata with dysfunction of DA transmission at the synaptic level, PE accumulation increased,suggesting a compensatory increase in PE synthesis. This increase in PE levels does not appear to be mediated by an increase in the total striatal aromaticl-amino acid decarboxylase (AADC) activity. We conclude that inhibition of MAO-B has no effect on DA metabolism in the hemi-parkinsonian rat striatum and that PE could be involved in the antiparkinsonian action of MAO-B inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knoll, J., and Magyar, K. 1972. Some puzzling pharmacological effects of monoamine oxidase inhibitors. 393–408,in E. Costa and M. Sandler (eds.), Monoamine oxidases—new vistas, Raven Press, New York.

    Google Scholar 

  2. Birkmayer, W., Riederer, P., Linauer, L., and Youdim, M. B. 1975. The potentiation of the anti-kinetic effect after L-dopa treatment by an inhibitor of MAO-B, deprenyl. J. Neural. Transm. 36:303–326.

    Google Scholar 

  3. The Parkinson Study Group. 1989. Effect of deprenyl on the progression of disability in early Parkinsons disease. N. Engl. J. Med. 321:1364–1371.

    Google Scholar 

  4. Azzaro, A. J., King, J., Kotzuk, J., Schoepp, D. D., Frost, J., and Schochet, S. 1985. Guinea pig striatum as a model of human dopamine deamination: the role of monoamine oxidase isozyme ratio, localisation and affinity for substrate in synaptic dopamine metabolism. J. Neurochem. 45:949–956.

    Google Scholar 

  5. Zsilla, G., Földi, P., Held, G., Szekëly, A. M., and Knoll, J. 1986. The effect of repeated doses of (−) deprenyl on the dynamics of monoaminergic transmission. Comparison with clorgyline. Pol. J. Pharmacol. Pharm. 38:57–67.

    Google Scholar 

  6. Paterson, I. A., Juorio, A. V., Berry, M. D., and Zhu, M.-Y. 1991. Inhibition of monoamine oxidase-B by (−) deprenyl potentiates neuronal responses to dopamine agonists but does not inhibit dopamine catabolism in the rat striatum. J. Pharmacol. Exp. Ther. 258:1019–1026.

    Google Scholar 

  7. Butcher, S. P., Fairbrother, I. S., Kelly, J. S., and Arbuthnott, G. W. 1990. Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J. Neurochem. 55:981–988.

    Google Scholar 

  8. Hovevey-Sion, D., Kopin, I. J., Stull, R. W., and Goldstein, D. S. 1989. Effects of monoamine oxidase inhibitors on levels of catechols and homovanillic acid in striatum and plasma. Neuropharmacol. 28:791–797.

    Google Scholar 

  9. Levitt, P., Pintar, J. E., and Breakfield, X. O. 1982. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurones. Proc. Natl. Acad. Sci. USA. 79:6385–6389.

    Google Scholar 

  10. Yu, P. H., and Hertz, L. 1982. Differential expression of type A and type B monoamine oxidase of mouse astrocytes in primary cultures. J. Neurochem. 39:1492–1495.

    Google Scholar 

  11. Westlund, K. N., Denney, R. M., Kocherspeger, L. M., Rose, R. M., and Abell, C. W. 1985. Distinct monoamine oxidase A and B populations in primate brain. Science. 230:181–183.

    Google Scholar 

  12. Zigmond, M. J., Abercrombie, E. D., Berger, T. W., Grace, A. A., and Stricker, E. M. 1990. Compensations after lesions of central dopaminergic neurons: some basic and clinical implications. Trends Neur. 13:290–296.

    Google Scholar 

  13. Paterson, I. A., Juorio, A. V., and Boulton, A. A. 1990. 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J. Neurochem. 55:1827–1837.

    Google Scholar 

  14. Saavedra, J. M. 1974. Enzymatic isotopic assay for the presence of β-phenylethylamine in brain. J. Neurochem. 26:1359–1365.

    Google Scholar 

  15. Dyck, L. E., Yang, C. R., and Boulton, A. A. 1983. The biosynthesis of p-tyramine, m-tyramine and β-phenylethylamine by rat striatal slices. J. Neurosci. Res. 10:211–220.

    Google Scholar 

  16. Greenshaw, A. J., Juorio, A. V., and Nguyen, N. T. 1986. Depletion of striatal β-phenylethylamine following dopamine but not 5-HT denervation. Brain Res. Bull. 17:477–484.

    Google Scholar 

  17. Juorio, A. V., Paterson, I. A., Zhu, M.-Y., and Matte, G. 1991. Electrical stimulation of the substantia nigra and changes of 2-phenylethylamine synthesis in the rat striatum. J. Neurochem. 56:213–220.

    Google Scholar 

  18. Ranje, C., and Ungerstedt, U. 1977. High correlation between number of dopamine cells, dopamine levels and motor performance. Brain Res. 134:83–93.

    Google Scholar 

  19. Paxinos, G., and Watson, C. 1986. The rat brain in stereotaxic co-ordinates. 2nd Edition. Toronto: Academic Press.

    Google Scholar 

  20. Ungerstedt, U. 1971. Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol. Scand. 367:69–93.

    Google Scholar 

  21. Kwok, R. P. S., and Juorio, A. V. 1986. Concentration of striatal tyramine and dopamine metabolism in diabetic rats and effect of insulin administration. Neuroendocrinology. 43:590–596.

    Google Scholar 

  22. Durden, D. A., Philips, S. R., and Boulton, A. A. 1973. Identification and distribution of β-phenylethylamine in the rat. Can. J. Biochem. 51:995–1002.

    Google Scholar 

  23. Nagatsu, T., Yamamoto, T., and Kato, T. 1979. A new and highly sensitive volammetric assay for AADC activity by highperformance liquid chromatography. Anal. Biochem. 100:160–165.

    Google Scholar 

  24. Okuno, S., and Fujisawa, H. 1983. Accurate assay of DOPA decarboxylase by preventing nonenzymatic decarboxylation of DOPA. Anal. Biochem. 129:412–415.

    Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  26. Knoll, J. 1983. Deprenyl (selegiline): The history of its development and pharmacological action. Acta Neurol. Scand. Suppl. 95:57–80.

    Google Scholar 

  27. Boulton, A. A., Ivy, G., Davis, B., Durden, D., Juoro, A. V., Yu, P., Mendonca, A., Milgram, W., Wu, P. H., and Paterson, I. A. 1992. Inhibition of MAO-B alters dopamine metabolism in primate caudate. Trans. Am. Soc. Neurochem. Abstr. 23:225.

    Google Scholar 

  28. Riederer, P., and Youdim, M. B. H. 1986. Monoamine oxidase activity in brains of Parkinsonian patients treated with L-deprenyl. J. Neurochem. 46:1359–1365.

    Google Scholar 

  29. Garrick, N. A., and Murphy, D. L. 1980. Species differences in the deamination of dopamine and other substrates for monoamine oxidase in brain. Psychopharmacol. 72:27–33.

    Google Scholar 

  30. Westlund, K. N., Denney, R. M., Rose, R. M., and Abell, C. W. 1988. Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience. 25:439–456.

    Google Scholar 

  31. Sharman, D. F., Poirier, L. J., Murphy, G. F., and Sourkes, T. L. 1967. Homovanillic acid and dihydroxyphenylacetic acid in the striatum of monkeys with brain lesions. Can. J. Phys. Pharmacol. 45:57–62.

    Google Scholar 

  32. Hornykiewicz, O. 1973. Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of L-DOPA). Br. Med. Bull. 29:172–178.

    Google Scholar 

  33. Li, X.-M., Juorio, A. V., Paterson, I. A., Walz, W., Zhu, M.-Y., and Boulton, A. A. 1992. Gene expression of aromatic L-amino acid decarboxylase in cultured rat glial cells. J. Neurochem. 59:1172–1175.

    Google Scholar 

  34. Juorio, A. V., Greenshaw, A. J., and Wishart, T. B. 1988. Reciprocal changes in striatal dopamine and β-phenylethylamine induced by reserpine in the presence of monoamine oxidase inhibitors. Naunyn-Schmiedeberg's Arch. Pharmacol. 338:644–648.

    Google Scholar 

  35. Juorio, A. V., Greenshaw, A. J., Zhu, M.-Y., and Paterson, I. A. 1991. The effects of some neuroleptics and d-amphetamine on striatal 2-phenylethylamine in the mouse. Gen. Pharmacol. 22:407–413.

    Google Scholar 

  36. Philips, S. R., Rozdilsky, B., and Boulton, A. A. 1978. Evidence for the presence of m-tyramine, p-tyramine, tryptamine and phenylethylamine in the rat brain and several areas of the human brain. Biol. Psychiat. 13:51–57.

    Google Scholar 

  37. Rossetti, Z. L., Silvia, C. P., Krajnc, D., Neff, N. H., and Hadjiconstantinou, M. 1990. Aromatic L-amino acid decarboxylase is modulated by D1 dopamine receptors in rat retina. J. Neurochem. 54:787–791.

    Google Scholar 

  38. Hadjiconstantinou, M., Wemlinger, T. A., Silvia, C. P., Hubble, J. P., and Neff, N. H. 1993. Aromatic L-amino acid decarboxylase activity of mouse striatum is modulated via dopamine receptors. J. Neurochem. 60:2175–2180.

    Google Scholar 

  39. Zhu, M.-Y., Juorio, A. V., Paterson, I. A., and Boulton, A. A. 1992. Regulation of aromatic L-amino acid decarboxylase by dopamine receptors in the rat brain. J. Neurochem. 58:636–641.

    Google Scholar 

  40. Hökfelt, T., Fuxe, K., and Goldstein, M. 1973. Immunohistochemical localization of aromaticL-amino acid decarboxylase (DOPA decarboxylase) in central dopamine and 5-hydroxytryptamine nerve cell bodies of the rat brain. Brain Res. 53:175–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarr, E., Wingerchuk, D.M., Juorio, A.V. et al. The effects of monoamine oxidase B inhibition on dopamine metabolism in rats with nigro-striatal lesions. Neurochem Res 19, 153–159 (1994). https://doi.org/10.1007/BF00966810

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966810

Key Words

Navigation