Skip to main content
Log in

Properties of acetylcholinesterase and non-specific cholinesterase in rat superior cervical ganglion and plasma

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Amphiphile dependency, solubility in aqueous solutions, and sensitivity to proteolysis of acetylcholinesterase (AChE) and nonspecific cholinesterase (nsChE) in the rat superior cervical ganglion were studied and compared to properties of soluble plasma cholinesterases. Ganglion AChE shows strong amphiphile dependency: an amphyphilic substance must be present in the homogenizing medium in order to obtain maximal apparent enzyme activity. Apparent activity of AChE solubilized in Ringer's solution was also increased after subsequent addition of a detergent. The 4 S molecular form, predominant in this extract (corresponding to the fastest electrophoretic band), is very sensitive to papain proteolysis but can be protected by a detergent. This molecular form therefore carries an important hydrophobic domain and is probably membrane bound in situ. The 10 S form of ganglionic AChE, extracted in Ringer's solution, is probably a soluble enzyme since, like soluble plasma enzymes, it is not amphiphile dependent and is rather resistant to proteolysis. Ganglion nsChE is more water soluble, less amphiphile dependent and more protease resistant than AChE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brzin, M., Sketelj, J., andKlinar, B. 1983. Cholinesterases. Pages 251–292,in Lajtha, A. (ed.), Handbook of Neurochemistry, 4, Plenum Press, New York.

    Google Scholar 

  2. Klingman, G. I., Klingman, J. D., andPoliszczuk, A. 1968. Acetyl-and pseudocholinesterase activities in sympathetic ganglia of rats. J. Neurochem. 15:1121–1130.

    PubMed  Google Scholar 

  3. Klingman, I. G., andKlingman, J. D. 1969. Cholinesterases of rat sympathetic ganglion after immunosympathectomy, decentralization and axotomy. J. Neurochem. 16:261–268.

    PubMed  Google Scholar 

  4. Eränkö, L. 1972. Biochemical and histochemical observations on the postnatal development on cholinesterases in the sympathetic ganglion of the rat. Histochem. J. 4:545–559.

    PubMed  Google Scholar 

  5. Somogyi, P., andChubb, I. W. 1976 The recovery of acetylcholinesterase activity in the superior cervical ganglion of the rat following its inhibition by diisopropylphosphorofluoridate: A biochemical and cytochemical study. Neuroscience 1:413–421.

    PubMed  Google Scholar 

  6. Chang, P. L. 1977. Effect of preganglionic sympathectomy on the cholinesterase activity in the superior cervical ganglia of rats and hamsters. Cell Tiss. Res. 179:111–120.

    Google Scholar 

  7. Klinar, B., andBrzin, M. 1980. Extracellular and intracellular cholinesterases in rat sympathetic ganglion. Period. Biol. 82:477–480.

    Google Scholar 

  8. Klinar, B., andBrzin, M. 1980. The separation of extra- and intracellular cholinesterases of the rat superior cervical ganglion by mild proteolytic treatment. A quantitative, histochemical and electron microscope cytochemical study. Cell. Mol. Biol. 26:459–467.

    Google Scholar 

  9. Koelle, W. A., Rickard, K. K., andKoelle, G. B. 1981. Effects of selective alkylphosphorylation of propionylcholinesterase on the regeneration of acetylcholinesterase in the aqueous soluble fraction of superior cervical ganglia of the rat following sarin. J. Neurochem. 36:402–405.

    PubMed  Google Scholar 

  10. Vigny, M., Gisiger, V., andMassoulie, J. 1978. “Nonspecific” cholinesterase and acetylcholinesterase in rat tissues: Molecular forms, structural and catalytic properties, and significance of the two enzyme systems. Proc. Natl. Acad. Sci. USA 75:2588–2592.

    PubMed  Google Scholar 

  11. Bon, S., Vigny, M., andMassoulie, J. 1979. Asymmetric and globular forms of acetylcholinesterase in mammals and birds. Proc. Natl. Acad. Sci. USA 76:2546–2550.

    PubMed  Google Scholar 

  12. Grassi, J., Vigny, M., andMassoulie, J. 1982. Molecular forms of acetylcholinesterase in bovine caudate nucleus and superior cervical ganglion: solubility properties and hydrophobic character. J. Neurochem. 38:457–469.

    PubMed  Google Scholar 

  13. Koelle, G. B., Koelle, W. A., andSmyrl, E. G. 1977. Effects of inactivation of butyrylcholinesterase on steady state and regenerating levels of ganglionic acetylcholinesterase. J. Neurochem. 28:313–319.

    PubMed  Google Scholar 

  14. Koelle, W. A., Smyrl, E. G., Ruch, G. A., Siddons, V. E., andKoelle, G. B. 1977. Effects of protection of butyrylcholinesterase on regeneration of ganglionic acetylcholinesterase. J. Neurochem. 28:307–311.

    PubMed  Google Scholar 

  15. Koelle, G. B., Rickard, K. K., andSmyrl, E. G. 1979. Steady state and regenerating levels of acetylcholinesterase in the superior cervical ganglion of the rat following selective inactivation of propionylcholinesterase. J. Neurochem. 33:1159–1164.

    PubMed  Google Scholar 

  16. Koelle, G. B., Ruch, G. A., Rickard, K. K., andSanville, U. J. 1982. Regeneration of cholinesterase in the stellate and normal and denervated superior cervical ganglia of the cat following inactivation by sarin. J. Neurochem. 38:1695–1698.

    PubMed  Google Scholar 

  17. Lewis, M. K., andEldefrawi, M. E. 1974. A simple, rapid and quantitative radiometric assay for acetylcholinesterase. Anal. Biochem. 57:588–592.

    PubMed  Google Scholar 

  18. Brubić, Z., Sketelj, J., andBrzin, M. 1975. Notes on the thinlayer chromatography radiometric assay of cholinesterase activity. Anal. Biochem. 69:306–309.

    PubMed  Google Scholar 

  19. Martin, R. G., andAmes, B. N. 1961 A method for determining the sedimentation behaviour of enzymes: Application to protein mixtures. J. Biol. Chem. 236:1372–1379.

    PubMed  Google Scholar 

  20. Ellman, G. L., Courtney, K. D., Andres, V., andFeatherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    PubMed  Google Scholar 

  21. Davis, B. L. 1964. Disc electrophoresis. II. Method and applications to human serum proteins. Ann. N. Y. Acad. Sci. 121:404–427.

    PubMed  Google Scholar 

  22. Karnovsky, M. J., andRoots, L. 1964. A “direct-coloring” tiocholine method for cholinesterase. J. Histochem. Cytochem. 12:219–221.

    PubMed  Google Scholar 

  23. Wiedmer, T., Di Francesco, C., andBrodbeck, U. 1979. Effects of amphiphiles on structure and activity of human erythrocyte membrane acetylcholinesterase. Eur. J. Biochem. 102:59–64.

    PubMed  Google Scholar 

  24. Sørensen, K., Géntinetta, R., andBrodbeck, U. 1982. An amphiphile-dependent form of human brain caudate nucleus acetylcholinesterase: purification and properties. J. Neurochem. 39:1050–1060.

    PubMed  Google Scholar 

  25. Edwards, J. A., andBrimijoin, S. 1983. Thermal inactivation of the molecular forms of acetylcholinesterase and butyrylcholinesterase. Biochim. Biophys. Acta 742:509–516.

    PubMed  Google Scholar 

  26. Stieger, S., Brodbeck, U., Reber, B., andBrunner, J. 1984. Hydrophobic labeling of the membrane binding domain of acetylcholinesterase from Torpedo marmorata. FEBS Lett., 168:231–234.

    PubMed  Google Scholar 

  27. Massoulie, J., Bon, S., andVigny, M. 1980. The polymorphism of cholinesterase in vertebrates. Neurochem. Int. 2:161–184.

    Google Scholar 

  28. Klinar, B., andBrzin, M., 1978. Cytochemical demonstration of the postnatal development of cholinesterases in the sympathtetic ganglion of the rat. Neuroscience 3:1129–1134.

    PubMed  Google Scholar 

  29. Rothman, J. E., andLodish, H. F. 1977. Synchronised transmembrane insertion and glycosylation of a nascent membrane protein. Nature 269:775–780.

    PubMed  Google Scholar 

  30. Thornton, J. M. 1981. Disulphide bridges in globular proteins. J. Mol. Biol. 151:161–287.

    Google Scholar 

  31. Scheele, G., andJacoby, R. 1982. Conformational changes associated with proteolytic processing of presecretory proteins allow glutathione-catalyzed formation of native disulphide bonds. J. Biol. Chem. 257:12277–12282.

    PubMed  Google Scholar 

  32. Muensch, H., Goedde, H. W., andYoshida, A. 1976. Human-serum cholinesterase subunits and number of active sites of the major component. Eur. J. Biochem. 70:217–223.

    PubMed  Google Scholar 

  33. Lockidge, O., Eckerson, H. W., andLaDu, B. N. 1979. Interchain disulphide bonds and subunit organization in human serum cholinesterase. J. Biol. Chem. 254:8324–8330.

    PubMed  Google Scholar 

  34. Gisiger, V., andVigny, M. 1977. A specific form of acetylcholinesterase is secreted by rat sympathetic ganglia. FEBS Lett. 84:253–256.

    PubMed  Google Scholar 

  35. Scarsella, G., Toschi, G., Bareggi, S. R., andGiacobini, E. 1979. Molecular forms of cholinesterases in cerebrospinal fluid, blood plasma and brain tissue of the beagle dog. J. Neurosc Res. 4:19–24.

    Google Scholar 

  36. Kimhi, Y., Mahler, A., andSaya, D. 1980. Acetylcholinesterase in mouse neuroblastoma cells: intracellular and released enzyme. J. Neurochem. 34:554–559.

    PubMed  Google Scholar 

  37. Pilowski, P. M., Hodgson, A. J., andChubb, I. W. 1982. Acetyl-cholinesterase in neural tube defects: a model using chick embryo amniotic fluid. Neuroscience 7:1203–1214.

    PubMed  Google Scholar 

  38. Carter, J. L., andBrimijoin, S. 1981. Effects of acute and chronic denervation on release of acetylcholinesterase and its molecular forms in rat diaphragms. J. Neurochem. 36:1018–1025.

    PubMed  Google Scholar 

  39. Chubb, I. W., andSmith, A. D. 1975. Release of acetylcholinesterase into the perfusate from the ox adrenal glands. Proc. Soc. Lond. B. 191:263–269.

    Google Scholar 

  40. Rakonczay, Z., Vincendon, G., andZanetta, J. P. 1981. Heterogeneity of rat brain acetylcholinesterase: a study by gel filtration and gradient centrifugation. J. Neurochem. 37:662–669.

    PubMed  Google Scholar 

  41. Esmail Meisami. 1984. Is butyrylcholinesterase of the rat CNS a membrane-bound enzyme? J. Neurochem. 42:883–886.

    PubMed  Google Scholar 

  42. Davis, R., andKoelle, G. B. 1978. Electron microscope localization of acetylcholin-esterase and butyrylcholinesterase in the superior cervical ganglion of the rat. 1. Normal ganglion. J. Cell. Biol. 78:785–809.

    PubMed  Google Scholar 

  43. Viana, G. B., andKauffman, F. C. 1984. Cholinesterase Activity in the rat superior cervical ganglion: effect of denervation and axotomy. Brain Res. 304:37–45.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinar, B., Kamarić, L., Sketelj, J. et al. Properties of acetylcholinesterase and non-specific cholinesterase in rat superior cervical ganglion and plasma. Neurochem Res 10, 797–808 (1985). https://doi.org/10.1007/BF00964537

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964537

Keywords

Navigation