Skip to main content
Log in

On the excitation of action potentials by protons and its potential implications for cholinergic transmission

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

One of the most conserved mechanisms for transmission of a nerve pulse across a synapse relies on acetylcholine (ACh). Ever since the Nobel Prize-winning works of Dale and Loewi, it has been assumed that ACh—subsequent to its action on a postsynaptic cell—is split into inactive by-products by acetylcholinesterase (AChE). Herein, the widespread assumption of inactivity of ACh’s hydrolysis products is falsified. Excitable cells (Chara braunii internodes), which had previously been unresponsive to ACh, became ACh-sensitive in the presence of AChE. The latter was evidenced by a striking difference in cell membrane depolarization upon exposure to 10 mM intact ACh (∆V = −2 ± 5 mV) and its hydrolysate (∆V = 81 ± 19 mV), respectively, for 60 s. This pronounced depolarization, which also triggered action potentials, was clearly attributed to one of the hydrolysis products: acetic acid (∆V = 87 ± 9 mV at pH 4.0; choline ineffective in the range 1–10 mM). In agreement with our findings, numerous studies in the literature have reported that acids excite gels, lipid membranes, plant cells, erythrocytes, as well as neurons. Whether excitation of the postsynaptic cell in a cholinergic synapse is due to protons or due to intact ACh is a most fundamental question that has not been addressed so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Throughout the manuscript, the term “proton” will be used synonymously for its hydrated forms, e.g., H3O+, H5O2 +.

  2. from (Changeux and Edelstein 2005): “Initial attempts to identify the acetylcholine-binding site were hindered [because several effectors on electroplaque] also bind to […] molecules distinct from the receptor and/or have high partition coefficients in lipidic compartiments”

  3. from Matthews-Bellinger and Salpeter (1978): “We have found that [α-bungarotoxin] has a high non-specific affinity for many substrates, especially glass and some plastics including Teflon.”

  4. The following modus ponens is an over-exaggerated example: If α-bungarotoxin binds with high affinity, the acetylcholine receptor is present. α-Bungarotoxin binds to Teflon. Thus, the acetylcholine receptor must be present on Teflon.

  5. It is not possible to apply pure ACh since the compound is hydrolyzed spontaneously, yet at a slow rate, in aqueous solution.

  6. It is probable that the excitatory potency of an acid varies based on, e.g., its pK, solubility, etc.

  7. The interested reader is referred to evidence in Wunderlich et al. (2009) and Heimburg (2010) that contradicts the concept of ion translocation through protein channels.

  8. Area of endplate, ∼7000 μm2; volume of endplate, ∼450 μm3; catalytic site density, ∼2500 sites μm−2; hydrolysis rate, 0.3 molecules catalytic site−1 msec−1; ACh release, 3°106 molecules pulse−1 endplate−1 (the latter value from Potter (1970) has been quoted frequently despite the fact that the calculation and assumptions taken were not detailed in the paper). Moreover, it is not clear if residual AChE activity (after eserin treatment) was accounted for. Generously assuming 99 % of inhibition, this still leaves a hydrolysis rate of ∼5°104 molecules msec−1 endplate−1. In Potter (1970), ACh release was determined in the bath ∼300 s after repetitive stimulation. During this timespan, ∼1.5°1010 additional molecules of ACh could have been hydrolyzed per endplate and would not appear in a detection essay. Thus, the actual concentration of ACh per pulse per endplate could easily have been 3°107 molecules—an order of magnitude larger than assumed—or even higher (as argued by some, 0.1–1 mM; see discussion in Ehrenpreis (1967)). Hydrolysis of ∼107 ACh molecules will, thus, take ∼1–2 msec under physiological conditions. In the presence of cholinesterase inhibitors, the reaction is not stopped but simply extended in time to ∼10–100 msec. These order of magnitude estimates are in good agreement with experimentally obtained timescales of excitatory postsynaptic potentials in the absence and presence of anticholinesterase (compare Fig. 6 in Katz (1962)).

  9. from I. Newton’s Rules of Reasoning in Philosophy: “We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances. Therefore, to the same natural effects we must, so far as possible, assign the same causes.”

  10. For instance, butyrylcholinesterase or spontaneous hydrolysis could contribute to the liberation of protons from ACh.

  11. In fact, any variation of a thermodynamic variable (temperature; dissolution of, e.g., ethanol; change of ion concentrations; mechanical extension; etc.) to which the system is susceptible

References

  • Akaike N, Ueno S (1994) Proton-induced current in neuronal cells. Prog Neurobiol 43:73–83

    Article  CAS  PubMed  Google Scholar 

  • Bal W, Kurowska E, Maret W (2012) The final frontier of pH and the undiscovered country beyond. PLoS One 7, e45832. doi:10.1371/journal.pone.0045832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartol TM, Land BR, Salpeter EE, Salpeter MM (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307. doi:10.1016/S0006-3495(91)82344-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beilby M (1989) Electrophysiology of giant algal cells. Methods Enzymol 174:403–443

    Article  CAS  Google Scholar 

  • Burckhardt B, Kroll B, Frömter E (1992) Proton transport mechanism in the cell membrane of Xenopus laevis oocytes. Pflugers Arch 420:78–82

    Article  CAS  PubMed  Google Scholar 

  • Changeux J-P, Edelstein S (2005) Nicotinic acetylcholine receptors. Odile Jacob Publishing Corporation, New York

    Google Scholar 

  • Cowan S (1936) The initiation of all-or-none responses in muscle by acetylcholine. J Physiol 88:3P–5P

    Google Scholar 

  • Dale H (1936) Some recent extensions of the chemical transmission of the effects of nerve impulses. Nobel lecture

  • Del Castillo J, Rodriguez A, Romero C (1967) Pharmacological studies on an artificial transmitter-receptor system. Ann N Y Acad Sci 144:803–818

    Article  Google Scholar 

  • Dettbarn W (1962) Acetylcholinesterase activity in Nitella. Nature 194:1175–1176

    Article  CAS  PubMed  Google Scholar 

  • Ehrenpreis S (1967) Possible nature of the cholinergic receptor. Ann N Y Acad Sci 144:720–736

    Article  CAS  Google Scholar 

  • Einstein A (1913) Zum gegenwärtigen Stande des Problems der spezifischen Wärme. Abhandlungen Bunsengesellschaft 3:330–364

    Google Scholar 

  • Frederickson RC, Jordan LM, Phillis JW (1971) The action of noradrenaline on cortical neurons: effects of pH. Brain Res 35:556–560

    Article  CAS  PubMed  Google Scholar 

  • Goldman R, Silman H, Caplan S et al (1965) Papain membrane on a collodion matrix: preparation and enzymic behavior. Science 150:758–760

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Bisson M (2002) Acetylcholine-activated Cl- channel in the Chara tonoplast. J Membr Biol 188:107–113. doi:10.1007/s00232-001-0177-z

    Article  CAS  PubMed  Google Scholar 

  • Griesbauer J, Bössinger S, Wixforth A, Schneider M (2012) Simultaneously propagating voltage and pressure pulses in lipid monolayers of pork brain and synthetic lipids. Phys Rev E 86:061909. doi:10.1103/PhysRevE.86.061909

    Article  CAS  Google Scholar 

  • Gruol D, Barker J, Huang L et al (1980) Hydrogen ions have multiple effects on the excitability of cultured mammalian neurons. Brain Res 183:247–252

    Article  CAS  PubMed  Google Scholar 

  • Gundersen C, Miledi R (1983) Acetylcholinesterase activity of Xenopus laevis oocytes. Neuroscience 10:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Heimburg T (2010) Lipid ion channels. Biophys Chem 150:2–22. doi:10.1016/j.bpc.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  • Hoekman T, Dettbarn W (1971) Acetylcholine—a possible mechanism for the depolarization response in giant axons of the lobster circumesophageal connective. Biochem Pharmacol 20:1713–1717

    Article  CAS  PubMed  Google Scholar 

  • Holland WC, Graham JH (1955) Factors affecting the rates of hemolysis of mammalian erythrocytes on isotonic solutions of choline and certain choline esters. Am J Physiol 183:538–544

    CAS  PubMed  Google Scholar 

  • Hope A, Walker N. (1975) The physiology of giant algal cells. Cambridge University Press, Cambridge

  • Katz B (1962) The Croonian Lecture: the transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc R Soc London Ser B 155:455–477

    Article  Google Scholar 

  • Kaufmann K (1977a) On the kinetics of acetylcholine at the synapse. Naturwissenschaften 64:371–376

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann K (1977b) Fast kinetics of acetylcholine at synaptic membranes. Int J Quantum Chem Suppl XII:169–178

  • Kaufmann K (1980) Acetylcholinesterase und die physikalischen Grundlagen der Nervenerregung. Universität Göttingen, Germany

    Google Scholar 

  • Kaufmann K (1985) Lipid mechanisms and acetylcholinesterase function. In: Changeux J-P, Hucho F, Mälicke A, Neumann E (eds) Mol. basis nerve act. Walter de Gruyter, Berlin-New York, pp 765–778

    Google Scholar 

  • Kaufmann K, Silman I (1980) The induction of ion channels through excitable membranes by acetylcholinesterase. Naturwissenschaften 67:608–610

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann K, Silman I (1983) The induction by protons of ion channels through lipid bilayer membranes. Biophys Chem 18:89–99

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann K, Hanke W, Corcia A (1989) Ion channel fluctuations in pure lipid bilayer membranes: control by voltage. In: Book. https://sites.google.com/site/schneiderslab/research-group/literature

  • Kimelberg H, Papahadjopoulos D (1974) Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+ + K+)-stimulated adenosine triphosphatase. J Biol Chem 249:1071–1080

    CAS  PubMed  Google Scholar 

  • Kisnierienė V, Sakalauskas V, Pleskačiauskas A et al (2009) The combined effect of Cd2+ and ACh on action potentials of Nitellopsis obtusa cells. Cent Eur J Biol 4:343–350. doi:10.2478/s11535-009-0028-y

    Google Scholar 

  • Krishtal O, Pidoplichko V (1980) A receptor for protons in the nerve cell membrane. Neuroscience 5:2325–2327

    Article  CAS  PubMed  Google Scholar 

  • Kuffler S, Yoshikami D (1975) The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol 251:465–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn W, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165:514–516

    Article  CAS  Google Scholar 

  • Kusano K, Miledi R, Stinnakre J (1977) Acetylcholine receptors in the oocyte membrane. Nature 270:739–741

    Article  CAS  PubMed  Google Scholar 

  • Kusano K, Miledi R, Stinnakre J (1982) Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J Physiol 328:143–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewi O (1936) The chemical transmission of nerve action. Nobel lecture

  • Lühring H, Witzemann V (1995) Internodal cells of the giant green alga Chara as an expression system for ion channels. FEBS Lett 361:65–69

    Article  PubMed  Google Scholar 

  • Matthews-Bellinger J, Salpeter M (1978) Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J Physiol 279:197–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrishi JN, Bauer J (2002) Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 23:1984–1994

    Article  CAS  PubMed  Google Scholar 

  • Nachmansohn D (1959) Chemical and molecular basis of nerve activity. Academic, New York

    Google Scholar 

  • Nachmansohn D, Neumann E (1974) Properties and function of proteins in excitable membranes: an integral model of nerve excitability. Ann N Y Acad Sci 227:275–284

    Article  CAS  PubMed  Google Scholar 

  • Podleski T, Changeux J (1967) Electrical phenomena associated with the activity of the membrane-bound acetylcholinesterase. Science 157:1579–1581

    Article  CAS  PubMed  Google Scholar 

  • Potter L (1970) Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J Physiol 206:145–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberry TL (1979) Quantitative simulation of endplate currents at neuromuscular junctions based on the reaction of acetylcholine with acetylcholine receptor and acetylcholinesterase. Biophys J 26:263–289. doi:10.1016/S0006-3495(79)85249-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salpeter MM, Eldefrawi ME (1973) Sizes of end plate compartments, densities of acetylcholine receptor and other quantitative aspects of neuromuscular transmission. J Histochem Cytochem 21:769–778. doi:10.1177/21.9.769

    Article  CAS  PubMed  Google Scholar 

  • Silman I, Futerman A (1987) Modes of attachment of acetylcholinesterase to the surface membrane. Eur J Biochem 170:11–22

    Article  CAS  PubMed  Google Scholar 

  • Silman H, Karlin A (1967) Effect of local pH changes caused by substrate hydrolysis on the activity of membrane-bound acetylcholinesterase. Proc Natl Acad Sci U S A 58:1664–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinning A, Hübner C (2013) Minireview: pH and synaptic transmission. FEBS Lett 587:1923–1928. doi:10.1016/j.febslet.2013.04.045

    Article  CAS  PubMed  Google Scholar 

  • Soreq H, Parvari R, Silman I (1982) Biosynthesis and secretion of catalytically active acetylcholinesterase in Xenopus oocytes microinjected with mRNA from rat brain and from Torpedo electric organ. Proc Natl Acad Sci U S A 79:830–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Träuble H (1977) Membrane electrostatics. In: Abrahamsson S, Pascher I (eds) Struct. Biol. Membr. Springer, pp 509–550

  • Walters D, Kuhn W, Kuhn H (1961) Action potential with an artificial pH-muscle. Nature 189:381–383

    Article  CAS  PubMed  Google Scholar 

  • Wathey J, Nass M, Lester H (1979) Numerical reconstruction of the quantal event at nicotinic synapses. Biophys J 27:145–164. doi:10.1016/S0006-3495(79)85208-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderlich B, Leirer C, Idzko A-L et al (2009) Phase-state dependent current fluctuations in pure lipid membranes. Biophys J 96:4592–4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurzel M (1959) A suggested mechanism for the action of choline esters on animal organs, inferred from a study of the effect of choline-, beta-methylcholine-, and thiocholine-esters. Experientia 15:430–433

    Article  CAS  Google Scholar 

  • Wurzel M (1967) The physiological role of cholinesterase at cholinergic receptor sites. Ann N Y Acad Sci 144:694–704

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Kaufmann for advocating the importance of interfaces and enzymatic “proton pistols” in biology. Moreover, we thank him for stimulating lectures and discussions. I. Silman, B. Fichtl, S. Shrivastava, H. Kong, and W. Hanke have provided helpful criticism of the manuscript. CF is grateful for funding by the Max Kade Foundation (http://maxkadefoundation.org/) and the Austrian Academy of Sciences (www.oeaw.ac.at/). MFS would like to acknowledge financial support by BU-ENG-ME and by the German Science Foundation (DFG; research unit SHENC (visiting professorship)). Chara cells for starting our cultures were kind gifts of W. Hanke, I. Foissner, M. Bisson, and R. Wayne. We also thank D. Campbell for crafting plexiglass chambers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Fillafer.

Additional information

Handling Editor: Friedrich W. Bentrup

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fillafer, C., Schneider, M.F. On the excitation of action potentials by protons and its potential implications for cholinergic transmission. Protoplasma 253, 357–365 (2016). https://doi.org/10.1007/s00709-015-0815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0815-4

Keywords

Navigation