Skip to main content
Log in

Isoquinoline alkaloids

Inhibitory actions on cation-dependent ATP-phosphohydrolases

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Representatives of eleven different classes of isoquinoline alkaloids inhibit Na+, K+-ATPase and Mg2+-ATPase in rat brain microsomal preparations. In most cases the Na+, K+-ATPase is more sensitive than Mg2+-ATPase to inhibition by the alkaloids. The classes of alkaloids can be ranked according to potency of inhibition of Na+, K+-ATPase. Protoberberines are most effective, followed in decreasing order by benzophenanthridines, benzylisoquinolines, aporphines, tetrahydroprotoberberines, pavines, protopines, isoquinolines, tetrahydrobenzylisoquinolines, morphinanes, and tetrahydroisoquinolines. As specific representatives of each of the first four classes of alkaloids, berberine, sanguinarine, papaveroline and 1,2,10,11-tetrahydroxyaporphine, respectively, prove most valuable in kinetic studies because they exhibit the greatest inhibitory action on brain Na+, K+-ATPase. Kinetic analyses plotted in double reciprocal form reveal that berberine and 1,2,10,11-tetrahydroxyaporphine are simple linear competitive inhibitors with respect to ATP, whereas sanguinarine and papaveroline are simple linear noncompetitive inhibitors. These four representative alkaloids exhibit nonlinear competitive inhibition with respect to Na+-activation. Additionally, these alkaloids significantly inhibit rat brain microsomal K+-activatedpNPPase. The results demonstrate that certain members of several classes of isoquinoline alkaloids markedly affect various cation-dependent phosphohydrolases in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Repke, K. R. H. 1963. Metabolism of Cardiac Glycosides.In Wilbrandt, W. (ed.), New Aspects of Cardiac Glycosides, Pergamon Press, London, pp. 47–73.

    Google Scholar 

  2. Skou, J. C. 1965. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45:596–617.

    Google Scholar 

  3. Dahl, J. L., andHokin, L. E. 1974. The sodium-potassium adenosinetriphosphatase. Ann. Rev. Biochem. 43:327–356.

    Google Scholar 

  4. Schwartz, A., Lindenmayer, G. E., andAllen, J. C. 1975. The sodium-potassium adenosinetriphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27:3–134.

    Google Scholar 

  5. Jarnefelt, J. 1961. Inhibition of the brain microsomal adenosinetriphosphatase by depolarizing agents. Biochim. Biophys. Acta 48:111–116.

    Google Scholar 

  6. Israel, Y., Kalant, H., andLaufer, I. 1965. Effects of ethanol on Na, K, Mg-stimulated microsomal ATPase activity. Biochem. Pharmacol. 14:1803–1814.

    Google Scholar 

  7. Israel, Y., Kalant, H. andLeBlanc, A. E. 1966 Effects of lower alcohols on potassium transport and microsomal adenosine-triphosphatase activity of rat cerebral cortex. Biochem. J. 100:27–33.

    Google Scholar 

  8. Israel, Y., andSalazar, I. 1967. Inhibition of brain microsomal adenosine triphosphatases by general depressants. Arch. Biochem. Biophys. 122:310–317.

    Google Scholar 

  9. Sun, A. Y., andSamorajski, T. 1970. Effects of ethanol on the activity of adenosinetriphosphatase and acetylcholinesterase in synaptosomes from guinea pig brain. J. Neurochem. 17:1365–1372.

    Google Scholar 

  10. Israel, Y., Kalant, H., LeBlanc, E., Bernstein, J. C., andSalazar, I. 1970. Changes in cation transport and (Na+K)-activated adenosine triphosphatase produced by chronic administration of ethanol. J. Pharmacol. Exp. Ther. 174:330–336.

    Google Scholar 

  11. Akera, T., Rech, R. H., Marquis, W. J., Tobin, T., andBrody, T. M. 1973. Lack of relationship between brain (Na++K+)-activated adenosine triphosphatase and the development of tolerance to ethanol in rats. J. Pharmacol. Exp. Ther. 185:594–601.

    Google Scholar 

  12. Wallgren, H., Nikander, P., andVirtanen, P. 1975. Ethanol-induced changes in cation-stimulated adenosine triphosphatase activity and lipid-proteolipid labeling of brain microsomes.In Gross, M. M. (ed.), Alcohol Intoxication and Withdrawal, (Vol. 59 in Experimental Medicine and Biology), Plenum Press, New York, pp. 23–26.

    Google Scholar 

  13. Erwin, V. G., Kim, J., andAnderson, A. D. 1975. Effects of aldehydes on sodium plus potassium ion-stimulated adenosine triphosphatase of mouse brain. Biochem. Pharmacol. 24:2089–2095.

    Google Scholar 

  14. Sun, A. Y. andSamorajski, T. 1975. The effects of age and alcohol on (Na++K+)-ATPase activity of whole homogenate and synaptosomes prepared from mouse and human brain. J. Neurochem. 24:161–164.

    Google Scholar 

  15. Williams, J. W., Tada, M., Katz, A. M., andRubin, E. 1975. Effect of ethanol and acetaldehyde on the (Na++K+)-activated adenosine triphosphatase activity of cardiac plasma membranes. Biochem. Pharmacol. 24:27–32.

    Google Scholar 

  16. Roach, M. K., Khan, M. M., Coffman, R., Pennington, W., andDavis, D. L. 1973. Brain (Na++K+)-activated adenosine triphosphatase activity and neurotransmitter uptake in alcohol-dependent rats. Brain Res. 63:323–329.

    Google Scholar 

  17. Knox, W. H., Perrin, R. G., andSen, A. K. 1972. Effect of chronic administration of ethanol on (Na+K)-activated ATPase activity in six areas of the cat brain. J. Neurochem. 19:2881–2884.

    Google Scholar 

  18. Cohen, G., andCollins, M. 1970. Alkaloids from catecholamines in adrenal tissue: Possible role in alcoholism. Science 167:1749–1751.

    Google Scholar 

  19. Davis, V. E., Walsh, M. J. andYamanaka, Y. 1970. Augmentation of alkaloid formation from dopamine by alcohol and acetaldehydein vitro. J. Pharmacol. Exp. Ther. 174:401–412.

    Google Scholar 

  20. Davis, V. E., Cashaw, J. L., andMcMurtrey, K. D. 1975. Disposition of catecholamine-derived alkaloids in mammalian systems.In Gross, M. M. (ed.), Alcohol Intoxication and Withdrawal, (Vol. 59 in Experimental Medicine and Biology), Plenum Press, New York, pp. 65–78.

    Google Scholar 

  21. Whaley, W. M., andGovindachari, T. R. 1951. The Pictet-Spengler synthesis of tetrahydroisoquinolines and related compounds.In Adams, R. (ed.), Organic Reactions, Vol. 6, John Wiley and Sons, Inc., New York, pp. 151–206.

    Google Scholar 

  22. McMurtrey, K. D., Meyerson, L. R., andDavis, V. E. 1977. Kinetics of the Pictet-Spengler reaction of biogenic amines and related compounds (abstract # 190) Div. of Org. Chem., Am. Chem. Soc., 173rd, ACS National Meeting.

  23. Yamanaka, Y., Walsh, M. J., andDavis, V. E. 1970. Salsolinol an alkaloid derivative of dopamine formedin vitro during alcohol metabolism. Nature (London) 227:1143–1144.

    Google Scholar 

  24. Collins, M. A., andBigdeli, M. G. 1975. Tetrahydroisoquinolinesin vivo. I. Rat brain formation of salsolinol, a condensation product of dopamine and acetaldehyde, under certain conditions during ethanol intoxication. Life Sci. 16:585–602.

    Google Scholar 

  25. Holtz P., Stock, K., andWestermann, E. 1964. Pharmakologie des Tetrahydropapaverolines und seine Entstehung aus Dopamin. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak. 248:387–405.

    Google Scholar 

  26. Turner, A. J., Baker, K. M., Algeri, S., Frigerio, A., andGarattini, S. 1974. Tetrahydropapaveroline: Formationin vivo andin vitro in rat brain. Life Sci. 14:2247–2257.

    Google Scholar 

  27. Sandler, M., Carter, S. B., Hunter, K. R., andStern, G. M. 1973. Tetrahydroisoquinoline alkaloids:In vivo metabolites ofl-DOPA in man. Nature (London) 241:439–443.

    Google Scholar 

  28. Battersby, A. R. 1961. Alkaloid biosynthesis. Q. Rev. 15:259–286.

    Google Scholar 

  29. Bentley, K. W. 1965. The Isoquinoline Alkaloids, Pergamon Press New York.

    Google Scholar 

  30. Spenser, I. D. 1966. Biosynthesis of the alkaloids related to norlaudanosoline. Lloydia 29:71–89.

    Google Scholar 

  31. Kirby, G. W. 1967. Biosynthesis of the morphine alkaloids. Science 155:170–173.

    Google Scholar 

  32. Santavy, F. 1970. Papaveraceae alkaloids.In Manske, R. H. F. (ed.), The Alkaloids, Vol. XII, Academic Press, New York, pp. 333–454.

    Google Scholar 

  33. Shamma, M. 1972. The Isoquinoline Alkaloids: Chemistry and Pharmacology.In Blomquist, A. T., and Wasserman, H. (eds.), Organic Chemistry, Vol. 25, Academic Press, New York.

    Google Scholar 

  34. Straub, K. D., andCarver, P. 1975. Sanguinarine, inhibitor of Na−K dependent ATPase. Biochem. Biophys. Res. Comm. 62:913–922.

    Google Scholar 

  35. Cashaw, J. L., McMurtrey, K. D., Meyerson, L. R., andDavis, V. E. 1976. Gas chromatographic-mass spectral characteristics of aporphine and tetrahydroprotoberberine alkaloids. Anal. Biochem. 74:343–353.

    Google Scholar 

  36. Pitts, B. J. R., andSchwartz, A. 1975. Improved purification and partial characterization of (Na+, K+)-ATPase from cardiac muscle. Biochim. Biophys. Acta 401:184–195.

    Google Scholar 

  37. Lowry, O. H. Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  38. Schwartz, A., Allen, J. C., andHarigaya, S. 1969. Possible involvement of cardiac Na+, K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides. J. Pharmacol. Exp. Ther. 168:31–41.

    Google Scholar 

  39. Penniall, R. 1966. An improved method for the determination of inorganic phosphate by the isobutanol-benzene extraction procedure. Anal. Biochem. 14:87–90.

    Google Scholar 

  40. Lineweaver, H., andBurk, D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56:658–666.

    Google Scholar 

  41. Tobin, T., andBrody, T. M. 1972. Rates of dissociation of enzyme-ouabain complexes andK 0.5 values in (Na++K+) adenosine triphosphatase from different species. Biochem. Pharmacol. 21:1553–1560.

    Google Scholar 

  42. Ku, D. D., Akera, T., Tobin, T., andBrody, T. M., 1976. Comparative species studies on the effect of monovalent cations and ouabain on cardiac Na+, K+-adenosine triphosphatase and contractile force. J. Pharmacol. Exp. Ther. 197:458–469.

    Google Scholar 

  43. Roufogalis, B. D. 1975. Comparative studies on the membrane actions of depressant drugs: The role of lipophilicity in inhibition of brain sodium and potassium-stimulated ATPase. J. Neurochem. 24:51–61.

    Google Scholar 

  44. Kirshner, N., Smith, W. J., andKirshner, A. G. 1966. Uptake and storage of catecholamines.In Von Euler, U. S. (ed.), Mechanisms of Release of Biogenic Amines, Pergamon Press, New York, pp. 109–123.

    Google Scholar 

  45. Sharma, V. K., andBanerjee, S. P. 1976. The effect of ouabain on (3H)norepinephrine uptake by peripheral tissues of some mammalian species. Fed. Proc. 35:405.

    Google Scholar 

  46. Pletscher, A., andGraf, M. 1976. Role of ATP in the uptake of noradrenaline by membranes of adrenal chromaffin granules. J. Pharm. Pharmacol. 28:938–939.

    Google Scholar 

  47. Davis, V. E. 1973. Neuroamine-derived alkaloids: A possible common denominator in alcoholism and related drug dependencies. Ann. N.Y. Acad. Sci. 215:111–115.

    Google Scholar 

  48. Tennyson, V. M., Cohen, G., Mytilineou, C., andHeikkila, R. 1973. 6,7-Dihydroxytetrahydroisoquinoline: Electron microscopic evidence for uptake into the aminebinding vesicles in sympathetic nerves of rat iris and pineal gland. Brain Res. 51:161–169.

    Google Scholar 

  49. Furlanut, M., Carpenedo, F., andFerrari, M. 1973. Effects of some isoquinoline compounds and certain derivatives on brain phosphodiesterase activity. Biochem. Pharmacol. 22:2642–2644.

    Google Scholar 

  50. Locke, S., Cohen, G., andDembiec, D. 1973. Uptake and accumulation of3H-6,7-dihydroxytetrahydroisoquinoline by peripheral sympathetic nervesin vivo. J. Pharmacol. Exp. Ther. 187:56–67.

    Google Scholar 

  51. Greenburg, R. S., andCohen, G. 1973. Tetrahydroisoquinoline alkaloids: Stimulated secretion from the adrenal medulla. J. Pharmacol. Exp. Ther. 184:119–128.

    Google Scholar 

  52. Cohen, G., Heikkila, R. E., Dembiec, D., Sang, D., Teitel, S., andBrossi, A. 1974. Pharmacologic activity of stereoisomers of 1-substituted 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines: Inhibition of3H-dopamine accumulation by rat brain slices and lipolytic activity with isolated mouse fat cells. Eur. J. Pharmacol. 29:292–297.

    Google Scholar 

  53. Simpson, L. L. 1975. An analysis of the sympathomimetic activity of 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (TIQ). J. Pharmacol. Exp. Ther. 192:365–371.

    Google Scholar 

  54. Alpers, H. S., McLaughlin, B. R., Nix, W. M., andDavis, V. E. 1975. Inhibition of catecholamine uptake and retention in synaptosomal preparations by tetrahydroisoquinoline and tetrahydroprotoberberine alkaloids. Biochem. Pharmacol. 24:1391–1396.

    Google Scholar 

  55. Cohen, G., andKatz, S. 1975. 6,7-Dihydroxyisoquinoline: Evidence forin vivo inhibition of intraneuronal monoamine oxidase. J. Neurochem. 25:719–722.

    Google Scholar 

  56. Giovine, A., Renis, M., andBertolino, A. 1976.In vivo andin vitro studies on the effect of tetrahydropapaveroline and salsolinol on COMT and MAO activity in rat brain. Pharmacology 14:86–94.

    Google Scholar 

  57. Meyerson, L. R., McMurtrey, K. D., andDavis, V. E. 1976. Neuroamine-derived alkaloids: Substrate-preferred inhibitors of rat brain monoamine oxidasein vitro. Biochem. Pharmacol. 25:1013–1020.

    Google Scholar 

  58. Robinson, J. D. 1975. Harmaline inhibits the (Na++K+)-dependent ATPase by affecting both Na+ and K+ activation. Biochem. Pharmacol. 24:2005–2007.

    Google Scholar 

  59. Canessa, M., Jaimovich, E., andde la Fuente, M. 1973. Harmaline: A competitive inhibitor of Na ion in the (Na++K+)-ATPase system. J. Membrane Biol. 13:263–282.

    Google Scholar 

  60. Lindenmayer, G. E., andSchwartz, A. 1973. Nature of the transport adenosine triphosphatase digitalis complex. J. Biol. Chem. 248:1291–1300.

    Google Scholar 

  61. Wallick, E. T., Dowd, F., Allen, J. C., andSchwartz, A. 1974. The nature of the transport adenosine triphosphatase-digitalis complex. VII. Characteristics of ouabagenin-Na+, K+-adenosine triphosphatase interaction. J. Pharmacol. Exp. Ther. 189:434–444.

    Google Scholar 

  62. Fedelesova, M., Dzurba, A. andZiegelhoffer, A. 1975. Studies on the mechanism of dog heart (Na++K+)ATPase inhibition byD,L-aspartic acid and its K+ and Mg2+ salts. Biochem. Pharmacol. 24:1847–1850.

    Google Scholar 

  63. Robinson, J. D. 1970. Diethyl stilbestrol-mode of inhibition of the (Na++K+)-dependent adenosine triphosphatase. Biochem. Pharmacol. 19:1852–1855.

    Google Scholar 

  64. Robinson, J. D. 1970. Interactions between monovalent cations and the (Na++K+)-dependent adenosine triphosphatase. Arch. Biochem. Biophys. 139:17–21.

    Google Scholar 

  65. Squires, R. F. 1965. On the interactions of Na+, K+, Mg++, and ATP with the Na+ plus K+ activated ATPase from rat brain. Biochem. Biophys. Res. Comm. 19:27–32.

    Google Scholar 

  66. Lindenmayer, G. E., Schwartz, A., andThompson, H. K. 1974. A kinetic description for sodium and potassium effects on (Na++K+)-adenosine triphosphatase: A model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation. J. Physiol. 236:1–28.

    Google Scholar 

  67. Cornish-Bowden, A. J. 1976. Principles of Enzyme Kinetics, Butler & Tanner Ltd, England, pp. 116–141.

    Google Scholar 

  68. Bader, H., andSen, A. K. 1966 K+-Dependent acylphosphatase as part of the Na+, K+-ATPase of cell membranes. Biochim. Biophys. Acta 118:116–123.

    Google Scholar 

  69. Askari, A., andKoyal, D. 1968. Different oligomycin sensitivities of the Na++K+-activated adenosinetriphosphatase and its partial reactions. Biochem. Biophys. Res. Comm. 32:227–232.

    Google Scholar 

  70. Robinson, J. D. 1969. Kinetic studies on a brain microsomal ATPase. II. K dependent phosphatase. Biochemistry 8:3348–3355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyerson, L.R., McMurtrey, K.D. & Davis, V.E. Isoquinoline alkaloids. Neurochem Res 3, 239–257 (1978). https://doi.org/10.1007/BF00964063

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964063

Keywords

Navigation