Skip to main content
Log in

Nitric oxide and endothelin in pathophysiological settings

  • Basic Science Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The role of the endothelium, is now known to encompass the generation of many potent cytokines which impact endothelial cells, adjacent tissue such as smooth muscle cells, and distant sites in an autocrine, paracrine, and endocrine manner, respectively. This review addresses two of these cytokines, nitric oxide and endothelin, and describes how each effects the functions of endothelial cells, including regulation of platelet aggregation and coagulation, regulation of vasomotor tone, modulation of inflammation, and the regulation of cellular proliferation. The emphasis is on the increasingly recognized importance of the autocrine and paracrine mechanisms by which nitric oxide and endothelin act. In particular, autoinduction of endothelin is proposed as a central mechanism underlying endothelin's renowned effects. Additionally, specific nitric oxide/endothelin interactions are discussed by which each cytokine modulates the production and actions of the other. The net effect observed in a variety of physiological and pathophysiological settings, therefore, reflects a balance of these opposing functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Engelberg H (1989) Endothelium in health and disease. Semin Thromb Hemost 15: 178–183

    Google Scholar 

  2. Kaiser L, Sparks HV Jr (1987) Endothelial cells: not just a cel-Jophane wrapper. Arch Intern Med 147: 569–573

    Google Scholar 

  3. Furchgott RF, Zawadzki JW (1980) The obligatory role of endothelial cells in the relaxation of vascular smooth muscle by acetylcholine. Nature 286: 373–376

    Google Scholar 

  4. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 286: 524–526

    Google Scholar 

  5. Feelisch M, te Poel M, Zamora R, Deussen A, Moncada S (1994) Understanding the controversy over the identity of EDRF. Nature 368: 62–65

    Google Scholar 

  6. Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes: characterization, purification, molecular cloning, and functions. Hypertension 23: 1121–1131

    Google Scholar 

  7. Hibbs JB Jr, Westenfelder C, Taintor R, Vavrin Z, Kablitz C, Baranowski RL, Ward JH, Menlove RL, McMurray MP, Kushner JP, Samlowski W (1992) Evidence for cytokine-inducible nitric oxide synthesis froml-arginine in patients receiving interleukin-2 therapy. J Clin Invest 89: 867–877

    Google Scholar 

  8. Nussler AK, Di Silvio M, Billiar TR, Hoffman RA, Geller DA, Selby R, Madariaga J, Simmons RL (1992) Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med 176: 261–264

    Google Scholar 

  9. Denis M (1991) Tumor necrosis factor and granulocyte macrophage colony-stimulating factor stimulate human macrophages to restrict growth of virulentMycobacterium avium and to kill avirulentM. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J Leukoc Biol 49: 380–387

    Google Scholar 

  10. Busse R, Mulsch A (1990) Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett 275: 87–90

    Google Scholar 

  11. Stuehr DJ, Cho HJ, Kwono NS, Weise MF, Nathan CF (1991) Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: a FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci USA 88: 7773–7777

    Google Scholar 

  12. Terada Y, Tomita K, Nonoguchi H, Marumo F (1992) Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNA's in microdissected rat nephron segments. J Clin Invest 90: 659–665

    Google Scholar 

  13. Luscher TF (1988) Endothelial vasoactive substances and cardiovascular disease. Basel, Karger

    Google Scholar 

  14. Ignarro LJ (1991) Commentary: signal, transduction mechanisms involving nitric oxide. Biochem Pharmacol 41: 485–490

    Google Scholar 

  15. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415

    Google Scholar 

  16. Kon V, Badr KF (1991) Biological actions and pathophysiologic significance of endothelin in the kidney. Kidney Int, 40: 1–12

    Google Scholar 

  17. Inoue, A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 86: 2863–2867

    Google Scholar 

  18. Marsden PA, Dorfman DM, Collins T, Brenner BM, Orkin SH, Ballermann BJ (1991) Regulated expression of endothelin-1 in glomerular capillary endothelial cells. Am J Physiol 261: F117-F125

    Google Scholar 

  19. Kohan DE, Hughes AK, Perkins SL (1992) Characterization of endothelin receptors in the inner medullary collecting duct of the rat. J Biol Chem 267: 12336–12340

    Google Scholar 

  20. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730–732

    Google Scholar 

  21. Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T (1990) Cloning of a cDNA encoding a nonisopeptide-selective subtype of the endothelin receptor. Nature 348: 732–735

    Google Scholar 

  22. Terada Y, Tomita K, Nonoguchi H, Marumo F (1992) Different localization of two types of endothelin receptor mRNA in microdissected rat nephron segments using reverse transcription and polymerase chain reaction. J Clin Invest 90: 107–112

    Google Scholar 

  23. Wagner OF, Christ G, Wojta J, Vierhapper H, Parzer S, Nowotny PJ, Schneider B, Waldhausl W, Binder BR (1992) Polar secretion of endothelin-1 by cultured endothelial cells. J Biol Chem 267: 16066–16068

    Google Scholar 

  24. Mellion BE, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AI, Kadowitz PJ (1981) Evidence for the inhibitory role of guanosine 3′, 5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 57: 946–955

    Google Scholar 

  25. Radomski MW, Palmer RM, Moncada S (1990) Anl-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87: 5193–5197

    Google Scholar 

  26. Penny WF, Ware JA (1992) Platelet activation and subseonent inhibition by plasmin and recombinant tissue-type plasmimogen activator. Blood 79: 91–98

    Google Scholar 

  27. Bowen R, Haslam RJ (1991) Effects of nitrovasodilators on platelet cyclic nucleotide levels in rabbit blood: role of cyclic AMP in synergistic inhibition of platelet function by SIN-1 and prostaglandin E1. J Cardiovasc Pharmacol 17: 424–433

    Google Scholar 

  28. Grodzinska L, Hafner G, Darius H (1990) Effect of molsidomine on t-PA and PAI activity in man: a double blind, placebo controlled study (letter). Thromb Haemost 64: 485

    Google Scholar 

  29. Remuzzi G, Perico N, Zoja C, Corna D, Macconi D, Vigano G (1990) Role of endothelium-derived nitric oxide in the bleeding tendency of uremia. J Clin Invest 86: 1769–1771

    Google Scholar 

  30. Noris M, Benigni A, Boccardo P, Aiello S, Gaspari F, Todeschini M, Figliuzzi M, Remuzzi G (1993) Enhanced nitric oxide synthesis in uremia: implications for platelet dysfunction and dialysis hypotension. Kidney Int 44: 445–450

    Google Scholar 

  31. Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 572–575

    Google Scholar 

  32. Ruschitzka F, Schrader J, Luders S, Schultz E, Gronau C, Talartschik J, Eisenhauer T Verwiebe R, Wameke G, Scheler F (1993) Effects of endothelin on coagulation, prostaglandins and hemodynamics. Contrib Nephrol 101: 30–36

    Google Scholar 

  33. Halim A, Kanayama N, el Maradny E, Maehara K, Terao T (1993) Coagulation in vivo microcirculation and in vitro caused by endothelin-1. Thromb Res 72: 203–209

    Google Scholar 

  34. Yamamoto C, Kaji T, Sakamoto M, Koizumi F (1992) Effect of endothelin on the release of tissue plasminogen activator and plasminogen activator inhibitor-1 from cultured human endothelial cells and interaction with thrombin. Thromb Res 67: 619–624

    Google Scholar 

  35. Ohlstein EH, Storer BL, Butcher JA, Debouck C, Feuerstein G (1991) Platelets stimulate expression of endothelin mRNA and endothelin biosynthesis in cultured endothelial cells. Circ Res 69: 832–841

    Google Scholar 

  36. McMurdo L, Lidbury PS, Thiemermann C, Vane JR (1993) Mediation of endothelin-1 inhibition of platelet aggregation via the EtB receptor. Br J Pharmacol 109: 530–534

    Google Scholar 

  37. Cotran RS, Pober JS (1989) Effects of cytokines on vascular endothelium: their role in vascular and immune injury. Kidney Int 35: 969–975

    Google Scholar 

  38. Benigni A, Boccardo P, Noris M, Remuzzi G, Siegler RL (1992) Urinary excretion of platelet-activating factor in haemolytic uraemic syndrome. Lancet 339: 835–836

    Google Scholar 

  39. Neild GH, Brown Z (1991) Endothelium and glomerular growth. Am J Kidney Dis 27: 670–672

    Google Scholar 

  40. Flavahan NA (1992) Atherosclerosis or lipoprotein-induced endothelial dysfunction: potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation 85: 1927–1938

    Google Scholar 

  41. Moncada S, Higgs A (1993) Thel-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012

    Google Scholar 

  42. Chen PY, St. John PL, Kirk KA, Abrahamson DR, Sanders PW (1993) Hypertensive nephrosclerosis in Dahl/Rapp rat: initial sites of injury and effect of dietaryl-arginine supplementation. Lab Invest 68: 174–184

    Google Scholar 

  43. Reyes AA, Purkerson ML, Karl I, Klahr S (1992) Dietary supplementation withl-arginine ameliorates the progression of renal disease in rats with subtotal nephrectomy. Am J Kidney Dis 20: 168–176

    Google Scholar 

  44. De Nicola L, Thomson SC, Wead LM, Brown MR, Gabbai FB (1993) Arginine feeding modifies cyclosporine nephrotoxicity in rats. J Clin Invest 92: 1859–1865

    Google Scholar 

  45. Gryglewski RJ (1993) Interactions between nitric oxide and prostacyclin. Semin Thromb Hemost 19: 158–166

    Google Scholar 

  46. Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28: 34–39

    Google Scholar 

  47. Baylis C, Mitruka B, Deng A (1992) Chronic blockade of nitric oxide synthesis in the rat, produces systemic hypertension and glomerular damage. J Clin Invest 90: 278–281

    Google Scholar 

  48. Xu D, Emoto N, Giaid A, Slaughter C, Kaw S, deWit D, Yanagisawa M (1994) ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78: 473–485

    Google Scholar 

  49. Simonson MS, Dunn MD (1990) Endothelin: pathways of transmembrane signaling. Hypertension 15 [Suppl I]: 15–112

    Google Scholar 

  50. Pollock DA, Opgenorth TJ (1993) Evidence for endothelin-induced renal vasoconstriction independent of EtA receptor activation. Am J Physiol 264: R222-R226

    Google Scholar 

  51. Firth JD, Ratcliffe PJ (1992) Organ distribution of the three rat endothelin messenger RNA's and the effects of ischemia on renal gene expression. J Clin Invest 90: 1023–1031

    Google Scholar 

  52. Awazu M, Sugiura M, Inagami T, Ichikawa I, Kon V (1991) Cyclosporine promotes glomerular endothelin binding in vivo. J Am Soc Nephrol 1: 1253–1258

    Google Scholar 

  53. Goligorsky MS, Tsukahara H, Magazine H, Andersen TT, Malik AB, Bahou WF (1994) Termination of endothelin signaling: role of nitric oxide. J Cell Physiol 158: 485–494

    Google Scholar 

  54. Kanse S, Ghatei M, Bloom SR (1989) Endothelin binding sites in porcine aortic and rat lung membranes. Eur J Biochem 182: 175–179

    Google Scholar 

  55. Yokokawa K, Tahara H, Kohno M, Murakawa K, Yasunari K, Nakagawa K, Hamada T, Otani S, Yanagisawa M, Takeda T (1991) Hypertension associated with endothelin-secreting malignant bemangioendothelioma. Ann Intern Med 114: 213–215

    Google Scholar 

  56. Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda H, Kuwaki T, Cao W-H, Kamada N, Jishage K, Ouchi Y, Azuma S, Toyoda Y, Ishikawa T, Kumada M, Yazaki Y (1994) Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 368: 703–710

    Google Scholar 

  57. Bath PM, Hassall DG, Gladwin AM, Palmer RM, Martin JF (1991) Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arteriosclerosis and Thrombosis 11: 254–260

    Google Scholar 

  58. Johnson G III, Tsao PS, Lefer AM (1991) Cardioprotective effects of authentic nitric oxide in myocardial ischemia with reperfusion. Crit Care Med 19: 244–252

    Google Scholar 

  59. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88: 4651–4655

    Google Scholar 

  60. Arndt H, Russell JB, Kurose I, Kubes P, Granger DN (1993) Mediators of leukocyte adhesion in rat mesenteric venules elicited by inhibition of nitric oxide synthesis. Gastroenterology 105: 675–680

    Google Scholar 

  61. Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456

    Google Scholar 

  62. Del Maestro RF, Planker M, Arfors KE (1982) Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium, in vivo. Int J Microcirc Clin Exp 1: 105–120

    Google Scholar 

  63. Gaboury J, Woodman RC, Granger DN, Reinhardt P, Kubes P (1993) Nitric oxide prevents leukocyte adherence: role of superoxide. Am J Physiol 265: H862–867

    Google Scholar 

  64. Mannaioni PF, Pistelli A, Gambassi F, Di Bello MG, Raspanti S, Masini E (1991) A place for free radicals in platelet-derived histamine releasing factor (PDHRF) and evidence that histaminergic receptors modulate platelet aggregation. Agents Actions 33: 57–60

    Google Scholar 

  65. Hogaboam CM, Donigi-Gale D, Shoupe TS, Bissonnette EY, Befus AD, Wallace JL (1992) Platelet-activating factor synthesis by peritoneal mast cells and its inhibition by two quinoline-based compounds. Br J Pharmacol 105: 87–92

    Google Scholar 

  66. Tonnesen MG, Anderson DC, Springer TA, Knedler A, Avdi N, Henson PM (1989) Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest 83: 637–646

    Google Scholar 

  67. Jones DA, Abbassi O, McIntire LV, McEver RP, Smith CW (1993) P-selectin mediates neutrophil rolling on histamine-stimulated endothelial cells. Biophys J 65: 1560–1569

    Google Scholar 

  68. McCarron RM, Wang L, Stanimirovic DB, Spatz M (1993) Endothelin induction of adhesion molecule expression on human brain microvascular endothelial cells. Neurosci Lett 156: 31–34

    Google Scholar 

  69. Lopez Farre A, Riesco A, Espinosa G, Digiuni E, Cernadas MR, Alvarez V, Monton M, Rivas F, Gallego MJ, Egido J, Casado S, Caramelo C (1993) Effect of endothelin-1 on neutrophil adhesion to endothelial cells and perfused heart. Circulation 88: 1166–1171

    Google Scholar 

  70. Hafstrom I, Ringertz B, Lundeberg T, Palmbald J (1993) The effect of endothelin, neuropeptide Y, calcitonin gene-related peptide and substance P on neutrophil functions. Acta Physiol Scand 148: 341–346

    Google Scholar 

  71. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777

    Google Scholar 

  72. Nunokawa Y, Tanaka S (1992) Interferon-γ inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation. Biochem Biophys Res Commun 188: 409–415

    Google Scholar 

  73. Scott-Burden T, Schini VB, Elizondo E, Junquero DC, Vanhoutte PM (1992) Platelet-derived growth factor suppresses and fibroblast growth factor enhances cytokine-induced production of nitric oxide in cultured smooth muscle cells. Effects on cell proliferation. Circ Res 71: 1088–1100

    Google Scholar 

  74. Junquero DC, Scott-Burden T, Schini VB, Vanhoutte PM (1992) Inhibition of cytokine-induced nitric oxide production by transforming growth factor-β1 in human smooth muscle cells. J Physiol 454: 451–465

    Google Scholar 

  75. Taguchi J, Abe J, Okazaki H, Takuwa Y, Kurokawa K (1993)l-Arginine inhibits neointimal formation following balloon injury. Life Sci 53: 387–392

    Google Scholar 

  76. Weiner CP, Lizasoain I, Baylis S, Knowles RG, Charles IG, Moncada S (1994) Induction of calcium-dependent nitric oxide syntheses by sex hormones. Proc Natl Acad Sci USA 91: 5212–5216

    Google Scholar 

  77. Ito H, Hirata Y, Hiroe M, Tsujino M, Adachi S, Takamoto T, Nitta M, Taniguchi K, Marumo F (1991) Endothelin-1, induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res 69: 209–215

    Google Scholar 

  78. Battistini B, Chailler P, D'Orleans-Juste P, Briere N, Sirois P (1993) Growth regulatory properties of endothelins. Peptides 14: 3855–399

    Google Scholar 

  79. Perico N, Remuzzi G (1993) Role of endothelin in glomerular injury. Kidney Int 43 [Suppl 39]: S76-S80

    Google Scholar 

  80. Simonson MS, Wann S, Mene P, Dubyak GR, Kester M, Nakazato Y, Sedor JR, Dunn MJ (1989) Endothelin stimulates phospholiphase C, Na/H exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest 83: 708–712

    Google Scholar 

  81. Ishimura E, Shouji S, Nishizawa Y, Morii H, Kashgarian M (1991) Regulation of mRNA expression for extracellular matrix (ECM) by cultured rat mesangial cells (MCS) (abstract). J Am Soc Nephrol 2: 546

    Google Scholar 

  82. Guarda E, Katwa LC, Myers PR, Tyagi SC, Weber KT (1993) Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res 27: 2130–2134

    Google Scholar 

  83. Bunchman TE, Brookshire CA (1991) Cyclosporine-induced synthesis of endothelin by cultured human endothelial cells. J Clin Invest 88: 310–314

    Google Scholar 

  84. Benigni A, Zoja C, Corna D, Orisio S, Longaretti L, Bertani T, Remuzzi G (1993) A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney Int 44: 440–444

    Google Scholar 

  85. Hunley TE, Fogo A, Iwasaki S, Kon V (1994) Endothelin A receptor mediates functional but not structural damage in chronic cyclosporine nephrotoxicity (abstract). J Am Soc Nephrol 5: 181

    Google Scholar 

  86. Kon V, Fogo A (1994) Endothelin mediates vasoconstriction whereas angiotensin II is linked to interstitial fibrosis in chronic cyclosporine toxicity (abstract). J Am Soc Nephrol 5: 924

    Google Scholar 

  87. Casscells W (1992) Migration of smooth muscle and endothelial cells: critical events in restenosis. Circulation 86: 723–729

    Google Scholar 

  88. Morigi M, Zoja C, Figliuzzi M, Remuzzi G, Remuzzi A (1993) Supernatant of endothelial cells exposed to laminar flow inhibits mesangial cell proliferation. Am J Physiol 264: C1080-C1083

    Google Scholar 

  89. Yoshizumi M, Kurihara H, Sugiyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki Y (1989) Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem Biophys Res Commun 161: 859–864

    Google Scholar 

  90. Kuchan MJ, Frangos JA (1993) Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cell. Am J Physiol 264: H150-H156

    Google Scholar 

  91. Malek AM, Greene AL, Izumo S (1993) Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. Proc Natl Acad Sci USA 90: 5999–6003

    Google Scholar 

  92. Warner TD, de Nucci G, Vane JR (1989) Endothelin is a vasodilator in the isolated perfused mesentery of the rat. Eur J Pharmacol 159: 325–326

    Google Scholar 

  93. Hirata Y, Emori T, Eguchi S, Kanno K, Imai T, Ohta K, Marumo F (1993) Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest 91: 1367–1373

    Google Scholar 

  94. Kohan DE, Padilla E (1994) Endothelin-1 production by rat inner medullary collecting duct: effect of nitric oxide, cGMP, and immune cytokines. Am J Physiol 266: F291-F297

    Google Scholar 

  95. Boulanger C, Luscher TF (1990) Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 85: 587–590

    Google Scholar 

  96. Iwasaki S, Homma T, Kon V (1994) Endothelin B receptor (EtB) mediates auto-induction of endothelin-1 (Et-1) (abstract). J Am Soc Nephrol 5: 717

    Google Scholar 

  97. Coffey RJ Jr, Derynck R, Wilcox JN, Bringman TS, Goustin AS, Moses HL, Pittelkow MR (1987) Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature 328: 817–820

    Google Scholar 

  98. Border WA, Noble NA (1993) Cytokines in kidney disease: the role of transforming growth factor-β. Am J Kidney Dis 22: 105–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunley, T.E., Iwasaki, S., Homma, T. et al. Nitric oxide and endothelin in pathophysiological settings. Pediatr Nephrol 9, 235–244 (1995). https://doi.org/10.1007/BF00860758

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00860758

Key words

Navigation