Skip to main content
Log in

Selected aspects of cell volume control in renal cortical and medullary tissue

  • Basic Science Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Under normal physiological conditions, demands placed on mammalian renal cortical cells are quite different from those in the medulla. Cortical proximal tubule cells exist in an isotonic environment, but must resorb vast amounts of filtered fluid and solute, and also adjust to solute generated from cellular metabolism. In addition, cortical cells must also adjust to occasional pathological derangements in blood osmolality. By contrast, human medullary cells have a smaller solute resorptive load, but exist in a milieu where osmolality varies from 40 to more than 1200 mosmol/kg H2O, depending on water intake. Remarkably, the cells maintain a near normal size despite these stresses. Under isosmotic conditions, the primary regulator of cell volume is Na-K ATPase. In its absence, factors such as external protein, extracellular matrix and basement membrane, cytoskeleton, and perhaps formation of cytoplasmic vesicular-like structures help prevent cells from swelling massively. Under anisosmotic conditions, a variety of transport processes operating across basolateral and apical membranes either remove solute from or add solute (and water) to cells to minimize changes in their size. Medullary cells have the additional ability to accumulate organic, non-toxic, osmolytes that offset external hypertonicity and allow cells to maintain normal size without increasing cellular inorganic ion concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macknight ADC (1987) Volume maintenance in isosmotic conditions. In: Gilles R, Bolis L, Kleinzeller A (eds) Current topics in membranes and transport, vol 30. Cell volume control: fundamental and comparative aspects in animal cells. Academic Press, San Diego, pp 3–43

    Google Scholar 

  2. Macknight ADC (1988) Principles of cell volume regulation. Renal Physiol Biochem 3–5:114–141

    Google Scholar 

  3. Linshaw MA, Stapleton FB, Cuppage FE, Grantham JJ (1977) Effect of basement membrane and colloid osmotic pressure on renal tubule cell volume. Am J Physiol 233:F325-F332

    Google Scholar 

  4. Pine MB, Brooks WW, Nosta JJ, Abelmann WH (1981) Hydrostatic forces limit swelling of rat ventricular myocardium. Am J Physiol 241:H740-H747

    Google Scholar 

  5. Spyropoulos CS (1979) Cytoplasmic gel and water relations of axon. J Membr Biol 47:195–238

    Google Scholar 

  6. Geiger B (1983) Membrane-cytoskeletal interaction. Biochim Biophys Acta 737:305–341

    Google Scholar 

  7. Kleinzeller A (1972) Cellular transport of water. In: Hokin LE (ed) Metabolic pathways, 3rd edn, vol. VI, Metabolic transport. Academic Press, New York, pp 91–131

    Google Scholar 

  8. Leaf A (1959) Maintenance of concentration gradients and regulation of cell volume. Ann N Y Acad Sci 72:396–404

    Google Scholar 

  9. Macknight ADC, Leaf A (1977) The regulation of cellular volume. Physiol Rev 57:510–573

    Google Scholar 

  10. Jacobson HR (1987) Ion transport in proximal nephron segments. In: Brenner B, Stein J (eds) Modern techniques of ion transport. Churchill Livingstone, New York, pp 199–235

    Google Scholar 

  11. Linshaw MA (1989) Volume control of isolated rabbit proximal tubules. Semin Nephrol 9:83–90

    Google Scholar 

  12. Dellasega M, Grantham JJ (1973) Regulation of renal tubule cell volume in hypotonic media. Am J Physiol 224:1288–1294

    Google Scholar 

  13. Linshaw MA (1980) Effect of metabolic inhibitors on renal tubule cell volume. Am J Physiol 239:F571-F577

    Google Scholar 

  14. Lohr JW, Sullivan LP, Cragoe EJ Jr, Grantham JJ (1989) Volume regulation determinants in isolated proximal tubules in hypertonic medium. Am J Physiol 256:F622-F631

    Google Scholar 

  15. Sullivan LP, Wallace DP, Clancy RL, Grantham JJ (1990) Effect of cellular acidosis on cell volume in S2 segments of renal proximal tubules. Am J Physiol 258:F831-F839

    Google Scholar 

  16. Cooke KR, Macknight ADC (1984) Effects of medium acetate on cellular volume in rabbit renal cortical slices. J Physiol (Lond) 349: 135–156

    Google Scholar 

  17. Macknight ADC (1985) The role of anions in cellular volume regulation. Pflugers Arch [Suppl] 405:S12-S16

    Google Scholar 

  18. Glynn IM, Karlish DJD (1975) The sodium pump. Annu Rev Physiol 37:13–55

    Google Scholar 

  19. Linshaw MA, Stapleton FB (1978) Effect of ouabain and colloid osmotic pressure in renal tubule cell volume. Am J Physiol 235: F480-F491

    Google Scholar 

  20. Linshaw MA, Welling LW (1983) Basolateral membrane properties in proximal convoluted tubules of the newborn rabbit. Am J Physiol 244:F172-F177

    Google Scholar 

  21. Linshaw MA, Bauman CA, Welling LW (1986) Use of trypan blue for identifying early proximal convoluted tubules. Am J Physiol 251:F214-F219

    Google Scholar 

  22. Linshaw MA, Welling LW, Bauman CA (1986) Basolateral membrane properties of juxtamedullary proximal tubule in newborn rabbit. Am J Physiol 251:F208-F213

    Google Scholar 

  23. Stapleton FB, Linshaw MA (1978) Regulation of cell volume in a single human proximal straight tubule. Renal Physiol 1:334–337

    Google Scholar 

  24. Cooke KR (1981) Ouabain and regulation of cellular volume in slices of mammalian renal cortex. J Physiol 320:319–332

    Google Scholar 

  25. Daniel EE, Robinson K (1971) Effects of inhibitors of active transport on22Na and42K movements and on nucleotide levels in rat uteri at 25° C. Can J Physiol Pharmacol 48:178–204

    Google Scholar 

  26. Hoffman JF, Kregenow FM (1966) The characterization of new energy-dependent cation transport processes in red blood cells. Ann N Y Acad Sci 137:566–576

    Google Scholar 

  27. Kleinzeller A, Knotkova A (1964) The effect of ouabain on the electrolyte and water transport in kidney cortex and liver slices. J Physiol (Lond) 175:172–192

    Google Scholar 

  28. Kleinzeller A, Knotkova A (1964) Electrolyte transport in rat diaphragm. Physiol Bohemoslov 13:317–326

    Google Scholar 

  29. Macknight ADC, Pilgrim JP, Robinson BA (1974) The regulation of cellular volume in liver slices. J Physiol (Lond) 238:279–294

    Google Scholar 

  30. Macknight ADC (1968) Water and electrolyte contents of rat renal cortical slices incubated in potassium-free media and media contatining ouabain. Biochim Biophys Acta 150:263–270

    Google Scholar 

  31. Macknight ADC (1983) Volume regulation in mammalian kidney cells. Mol Physiol 4:17–31

    Google Scholar 

  32. Whittam R, Willis JA (1963) Ion movements and oxygen consumption in kidney cortex slices. J Physiol (Lond) 168:158–177

    Google Scholar 

  33. Whittembury G (1965) Sodium extrusion and potassium uptake in guinea pig kidney cortex slices. J Gen Physiol 48:669–717

    Google Scholar 

  34. Paillard M, Leviel F, Gardin JP (1979) Regulation of cell volume in separated renal tubules incubated in hypotonic medium. Am J Physiol 236:F226-F231

    Google Scholar 

  35. Podevin RA, Boumendil-Podevin EF (1972) Effects of temperature, medium K+, ouabain and ethacrynic acid on transport of electrolytes and water in separated renal tubules. Biochim Biophys Acta 282:234–249

    Google Scholar 

  36. Rorive G, Nielsen R, Kleinzeller A (1972) Effect of pH on the water and electrolyte content of renal cells. Biochim Biophys Acta 266: 376–396

    Google Scholar 

  37. Mudge GH (1951) Electrolyte and water metabolism of rabbit kidney slices: effect of metabolic inhibitors. Am J Physiol 167: 206–223

    Google Scholar 

  38. Whittembury G (1968) Sodium and water transport in kidney proximal tubular cells. J Gen Physiol 51:3035–3143

    Google Scholar 

  39. Whittembury G, Proverbio F (1970) Two modes of Na extrusion in cells from guinea pig kidney cortex slices. Pfluegers Arch 316: 1–25

    Google Scholar 

  40. Marin R, Proverbio T, Proverbio F (1985) Active sodium transport in basolateral plasma membrane vesicles from rat kidney proximal tubular cells. Biochim Biophys Acta 814:363–373

    Google Scholar 

  41. Proverbio F, Duque JA, Proverbia T, Marin R (1988) Cell volume sensitive Na+-ATPase activity in rat kidney cortex membranes. Biochim Biophys Acta 941:107–110

    Google Scholar 

  42. Willis JS (1968) The interaction of K+, ouabain and Na+ on the cation transport and respiration of renal cortical slices of hamsters and ground squirrels. Biochim Biophys Acta 163:516–530

    Google Scholar 

  43. Mills JW, Macknight ADC, Jarrell JA, Dayer JM, Ausiello DA (1981) Interaction of ouabain with a Na+ pump in intact epithelial cells. J Cell Biol 88:637–643

    Google Scholar 

  44. Welling LW, Grantham JJ (1972) Physical properties of isolated perfused renal tubules and tubular basement membranes. J Clin Invest 51:1063–1075

    Google Scholar 

  45. Grantham JJ (1970) Vasopressin: effect on deformity of urinary surface of collecting duct cells. Science 168:1093–1095

    Google Scholar 

  46. Rand RP, Burton AC (1964) Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys J 4:115–135

    Google Scholar 

  47. Linshaw MA, Macalister TJ, Welling LW, Bauman CA, Hebert GZ, Downey GP, Koo EWY, Gotlieb AI (1991) Role of cytoskeleton in cell volume control of rabbit proximal tubules. Am J Physiol (in press)

  48. Civan MM (1981) Intracellular potassium in toad urinary bladder: the recycling hypothesis. In: Macknight ADC, Leader JP (eds) Epithelial ion and water transport. Raven, New York, pp 107–116

    Google Scholar 

  49. Jorgensen PL (1980) Sodium and potassium ion pump in kidney tubules. Physiol Rev 60:864–917

    Google Scholar 

  50. Doucet A (1988) Function and control of Na−K ATPase in single nephron segments of the mammalian kidney. Kidney Int 34: 749–760

    Google Scholar 

  51. Kumar S, Berg JA, Katz AA (1991) Na:K pump abundance and function in MDCK cells: effect of low ambient potassium. Renal Physiol Biochem 14:19–27

    Google Scholar 

  52. Cardinal J, Duchesneau D (1978) Effect of potassium on proximal tubular function. Am J Physiol 234:F381-F385

    Google Scholar 

  53. Biagi B, Kubota T, Sohtell M, Giebisch G (1981) Intracellular potentials in rabbit proximal tubules perfused in vitro. Am J Physiol 240:F200-F210

    Google Scholar 

  54. Gagnon J, Ouimet D, Nguyen H, Laprade R, LeGrimellec C, Carriere S, Cardinal J (1982) Cell volume regulation in the proximal convoluted tubule. Am. J Physiol 243:F408-F415

    Google Scholar 

  55. Comper WD, Laurent TC (1978) Physiological function of connective tissue polysaccharides. Physiol Rev 58:255–315

    Google Scholar 

  56. Law RO (1984) Characteristics of ionic binding by rat renal tissue in vitro. J Physiol (Lond) 353:67–80

    Google Scholar 

  57. Law RO (1984) The influence of age on fluid and sodium chloride distribution in rat aortic wall. Q J Exp Physiol 69:737–751

    Google Scholar 

  58. Kanwar YS, Farquhar MG (1980) Detachment of endothelium and epithelium from the glomerular basement membrane produced by kidney perfusion with neuraminidase. Lab Invest 42:375–384

    Google Scholar 

  59. Stow JL, Sawada H, Farquhar MG (1985) Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae in podocytes of the rat renal glomerulus. Proc Natl Acad Sci USA 82:3296–3300

    Google Scholar 

  60. Reubsaet FAG, Langeveld JPM, Veerkamp JH (1985) Glycosaminoglycan content of glomerular and tubular basement membranes of various species. Biochim Biophys Acta 838:144–150

    Google Scholar 

  61. Bershadsky AD, Vasiliev JM (1988) In: Siekevitz P (ed) Cytoskeleton. Cellular organelles series, 2nd edn. Plenum, New York, pp 4, 133

    Google Scholar 

  62. Mills JW (1987) The cell cytoskeleton: possible role in volume control. In: Gilles R, Bolis L, Kleinzeller A (eds) Current topics in membranes and transport, vol 30. Cell volume control: fundamental and comparative aspects in animal cells. Academic Press, San Diego, pp 75–101

    Google Scholar 

  63. Mills JW, Skiest DJ (1985) Role of cyclic AMP and the cytoskeleton in volume control in MDCK cells. Mol Physiol 8:247–262

    Google Scholar 

  64. Melmed RN, Karanian PJ, Berlin RD (1981) Control of cell volume in the J774 macrophage by microtubule disassembly and cyclic AMP. J Cell Biol 90:761–768

    Google Scholar 

  65. Rossum GDV van, Russo MA (1981) Ouabain-resistant mechanism of volume control and the ultrastructural organization of liver slices recovering from swelling in vitro. J Membr Biol 59:191–209

    Google Scholar 

  66. Foskett JK, Spring KR (1985) Involvement of calcium and cytoskeleton in gallbladder epithelial cell volume regulation. Am J Physiol 248:C27-C36

    Google Scholar 

  67. Gilles R, Delpire E, Duchene C, Cornet M, Pequex A (1986) The effect of cytochalasin B on the volume regulation response of isolated axons of the green crabCarcinus maenas submitted to hypoosmotic media. Comp Biochem Physiol [A] 85:523–525

    Google Scholar 

  68. Cornet M, Delpire E, Gilles R (1988) Relations between cell volume control and microfilaments networks in T2 and P12 cultured cells. J Physiol (Paris) 83:43–49

    Google Scholar 

  69. Kevers C, Pequex A, Gilles R (1979) Effects of an hypo-osmotic shock on Na+, K+ and CI-levels in isolated axons ofCarcinus maenas. J Comp Physiol 129:365–371

    Google Scholar 

  70. Cherksey BD, Zadunaisky JA (1981) Membrane beta-receptors: interaction with cytoskeleton in chloride secretory systems. In: Scott WN, Goodman DBP (eds) Hormonal regulation of epithelial transport of ions and water. Ann NY Acad Sci 372:309–331

  71. Schliwa M (1986) The cytoskeleton. In: Alfert M, Beermann W, Goldstein L, Porter KR (eds) Cell biology monographs, vol. 13 Springer, New York

    Google Scholar 

  72. Rapraeger A, Jalkanen M, Bernfield M (1986) Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J Cell Biol 103: 2683–2696

    Google Scholar 

  73. Dustin P (1984) Microtubules. Springer, Berlin, pp 171–233

    Google Scholar 

  74. Hartwig JH, Stossel TP (1979) Cytochalasin B and the structure of actin gels. J Mol Biol 134:539–553

    Google Scholar 

  75. DeBrabander M, Geuens G, Nuydens R, Willebrords R, Moeremans M, van Ginckel R, Distelmans W, Dragonetti C, Mareel M (1986) Tubulozole: A new stereoselective microtubule inhibitor. Ann NY Acad Sci 466:757–766

    Google Scholar 

  76. Geuens GMA, Nuydens RM, Willebrords RE, Viere RM van de, Goosens F, Dragonetti CH, Mareel MM, DeBrabander MJ (1985) The effects of tubulozole on the microtubule system of cells in culture and in vivo. Cancer Res 45:733–742

    Google Scholar 

  77. Schliwa M (1982) Action of cytochalasin D on cytoskeletal networks. J Cell Biol 92:79–91

    Google Scholar 

  78. Rampal AL, Pinkofsky HB, Jung CY (1980) Structure of cytochalasins and cytochalasin B binding sites in human erythrocyte membranes. Biochemistry 19:679–683

    Google Scholar 

  79. Russo MA, Ernst SA, Kapoor SC, Rossum GDV van (1985) Morphological and physiological studies of rat kidney cortex slices undergoing isosmotic swelling and its reversal: a possible mechanism for ouabain-resistant control of cell volume. J Membr Biol 85: 1–24

    Google Scholar 

  80. Janoshazi A, Seifter JL, Solomon AK (1989) Interactions between anion exchange and other membrane proteins in rabbit kidney medullary collecting duct cells. J Membr Biol 112:39–49

    Google Scholar 

  81. Van Rossum GDV, Russo MA, Schisselbauer JC (1987) Role of cytoplasmic vesicles in volume maintenance. In: Gilles R, Bolis L, Kleinzeller A (eds) Current topics in membranes and transport, vol 30. Cell volume control: fundamental and comparative aspects in animal cells. Academic Press, San Diego, pp 45–74

    Google Scholar 

  82. Okazaki Y, Tazawa M (1990) Calcium ion and turgor regulation in plant cells. J Membr Biol 114:189–194

    Google Scholar 

  83. Segawa A, Yamashina S (1989) Role of microfilaments in exocytosis: a new hypothesis. Cell Struct Funct 14:531–544

    Google Scholar 

  84. Lewis SA, Moura JLC de (1982) Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297:685–688

    Google Scholar 

  85. Gilles R, Duchene C, Lambert I (1983) Effect of ouabain on volume regulation of rabbit kidney cortex slices in hypo-osmotic media. Experientia 39:600–602

    Google Scholar 

  86. Seel M, Rorive G, Pequeux A, Gilles R (1980) Effect of a hypoosmotic shock on the volume and the ion content of rat kidney cortex slices. Comp Biochem Physiol [A] 65:29–33

    Google Scholar 

  87. Grantham JJ, Linshaw MA (1984) The effect of hyponatremia on the regulation of intracellular volume and solute composition. Circ Res 54:483–491

    Google Scholar 

  88. Linshaw MA, Grantham JJ (1980) Effect of collagenase and ouabain on renal cell volume in hypotonic media. Am J Physiol 238:F491-F498

    Google Scholar 

  89. Lohr JW, Grantham JJ (1986) Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J Clin Invest 78: 1165–1172

    Google Scholar 

  90. Grinstein S, Rothstein A, Sarkadi B, Gelfand EW (1984) Responses of lymphocytes to anisotonic media: volume regulating behavior. Am J Physiol 246:C204-C215

    Google Scholar 

  91. Hoffman EK, Lambert IH, Simonsen LO (1988) Mechanisms in volume regulation in Erhlich ascites tumor cells. Renal Physiol Biochem 3–5:221–247

    Google Scholar 

  92. Chamberlin ME, Strange K (1989) Anisosmotic cell volume regulation: a comparative view. Am J Physiol 257:C159-C173

    Google Scholar 

  93. Eveloff JL, Warnock DG (1987) Activation of ion transport systems during cell volume regulation. Am J Physiol 252:F1-F10

    Google Scholar 

  94. Fugelli K, Thoroed SM (1986) Taurine transport associated with cell volume regulation in flounder erythrocytes under anisosmotic conditions. J Physiol (Lond) 374:245–261

    Google Scholar 

  95. Hoffmann EK, Lambert IH (1983) Aminoacid transport and cell volume regulation in Ehrlich ascites tumor cells. J Physiol (Lond) 338:613–625

    Google Scholar 

  96. Hoffmann EK (1987) Volume regulation in cultured cells. In: Gilles R, Bolis L, Kleinzeller A (eds) Current topics in membranes and transport, vol 30. Cell volume control: fundamental and comparative aspects in animal cells. Academic Press, San Diego, pp 125–180

    Google Scholar 

  97. Grantham JJ, Lowe CM, Dellasega M, Cole B (1977) Effect of hypotonic medium on K and Na content of proximal renal tubules. Am J Physiol 232:F42-F49

    Google Scholar 

  98. Welling PA, Linshaw MA, Sullivan LP (1985) Effect of barium on cell volume regulation in rabbit proximal straight tubules. Am J Physiol 249:F20-F27

    Google Scholar 

  99. Welling PA, Linshaw MA (1988) Importance of anion in hypotonic volume regulation of rabbit proximal straight tubule. Am J Physiol 255:F853-F860

    Google Scholar 

  100. Welling PA, O'Neil RG (1990) Ionic conductive properties of rabbit proximal straight tubule basolateral membrane. Am J Physiol 258:F940-F950

    Google Scholar 

  101. Welling PA, O'Neil RG (1990) Cell swelling activates basolateral Cl and K conductances in rabbit proximal tubule. Am J Physiol 258: F951-F962

    Google Scholar 

  102. Schild L, Aronson PS, Giebisch G (1991) Basolateral transport pathways for K+ and Cl in rabbit proximal tubule: effects on cell volume. Am J Physiol 260:F101-F109

    Google Scholar 

  103. Knoblauch C, Montrose MH, Murer H (1989) Regulatory volume decrease by cultured renal cells. Am J Physiol 256: C252-C259

    Google Scholar 

  104. Biagi B, Sohtell M, Giebisch G (1981) Intracellular potassium activity in the rabbit proximal straight tubule. Am J Physiol 241: F677-F686

    Google Scholar 

  105. Biagi BA, Sohtell M (1986) pH sensitivity of the basolateral membrane of the rabbit proximal tubule. Am J Physiol 250:F261-F266

    Google Scholar 

  106. Suzuki M, Kawahara K, Ogawa A, Morita T, Kawaguchi Y, Kurihara S, Sakai O (1990) [Ca2+]i rises via G protein during regulatory volume decrease in rabbit proximal tubule cells. Am J Physiol 258: F690-F696

    Google Scholar 

  107. McCarty NA, O'Neil RG (1990) Dihydropyridine-sensitive cell volume regulation in proximal tubule: the calcium window. Am J Physiol 259:F950-F960

    Google Scholar 

  108. Kawahara K, Ogawa A, Suzuki M (1991) Hyposmotic activation of Ca-activated K channels in cultured rabbit kidney proximal tubule cells. Am J Physiol 260:F27-F33

    Google Scholar 

  109. Christensen O (1987) Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330:66–68

    Google Scholar 

  110. Sackin H (1987) Stretch-activated potassium channels in renal proximal tubule. Am J Physiol 253:F1253-F1262

    Google Scholar 

  111. Sackin H (1989) A stretch-activated K+ channel sensitive to cell volume. Proc Natl Acad Sci USA 86:1731–1735

    Google Scholar 

  112. Sackin H, Palmer LG (1987) Basolateral potassium channels in renal proximal tubule. Am J Physiol 253:F476-F487

    Google Scholar 

  113. Lohr JW (1990) Isovolumetric regulation of renal proximal tubules in hypotonic medium. Renal Physiol Biochem 13:233–240

    Google Scholar 

  114. Rome L, Lechene C, Grantham JJ (1990) Proximal tubule volume regulation in hypo-osmotic media: intracellular K+, Na+, and Cl. J Am Soc Nephrol 1:211–218

    Google Scholar 

  115. Kirk KL, Schafer JA, Dibona DR (1987) Cell volume regulation in rabbit proximal straight tubule perfused in vitro. Am J Physiol 252: F922-F932

    Google Scholar 

  116. Rome L, Grantham J, Savin V, Lohr J, Lechene C (1989) Proximal tubule volume regulation in hyperosmotic media: intracellular K+, Na+, and Cl. Am J Physiol 257:C1093–1100

    Google Scholar 

  117. Gilles R (1988) Comparative aspects of cell osmoregulation and volume control. Renal Physiol Biochem 3–5:277–288

    Google Scholar 

  118. Uchida S, Green N, Coon H, Triche T, Mims S, Burg MB (1987) High NaCl induces stable changes in phenotype and karyotype of renal cells in culture. Am J Physiol 253:C230-C242

    Google Scholar 

  119. Bagnasco S, Balaban R, Fales H, Yang YM, Burg M (1986) Predominant osmotically active organic solutes in rat and rabbit medullas. J Biol Chem 261:5872–5877

    Google Scholar 

  120. Bagnasco S, Uchida S, Balaban R, Kador P, Burg MB (1987) Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc Natl Acad Sci USA 84: 1718–1720

    Google Scholar 

  121. Moriyama T, Garcia-Perez A, Burg MB (1990) Factors affecting the ratio of different organic osmolytes in renal medullary cells. Am J Physiol 259:F847-F858

    Google Scholar 

  122. Hebert SC, Sun A (1988) Hypotonic cell volume regulation in mouse medullary thick ascending limb: effects of ADH. Am J Physiol 255:F962-F969

    Google Scholar 

  123. Hebert SC (1986) Hypertonic cell volume regulation in mouse thick limbs. I. ADH dependency and nephron heterogeneity. Am J Physiol 250:C907-C919

    Google Scholar 

  124. Hebert SC (1986) Hypertonic cell volume in mouse thick limbs. II. Na+−H+ and Cl−HCO3 exchange in basolateral membranes. Am J Physiol 250:C920-C931

    Google Scholar 

  125. Sun A, Hebert SC (1989) Rapid hypertonic cell volume regulation in the perfused inner medullary collecting duct. Kidney Int 36: 831–842

    Google Scholar 

  126. Blumenfeld J, Hebert S, Heilig C, Balschi J, Stromski M, Gullans S (1989) Organic osmolytes in inner medulla of the Brattleboro rat: effects of ADH and dehydration. Am J Physiol 256:F916-F922

    Google Scholar 

  127. Beck F, Dorge A, Rick R, Thurau K (1984) Intra and extracellular elemental concentrations of rat inner papilla in antidiuresis. Kidney Int 25:397–403

    Google Scholar 

  128. Beck FX, Dorge A, Thurau K (1988) Cellular osmoregulation in renal medulla. Renal Physiol Biochem 3–5:174–186

    Google Scholar 

  129. Gilles R (1987) Volume regulation in cells of euryhaline invertebrates. In: Gilles R, Bolis L, Kleinzeller A (eds) Current topics in membranes and transport, vol 30. Cell volume control: fundamental and comparative aspects in animal cells. Academic Press, San Diego, pp 205–247

    Google Scholar 

  130. Kleinzeller A (1985) Trimethylamine oxide and the maintenance of volume of dogfish rectal gland cells. J Exp Zool 236:11–17

    Google Scholar 

  131. Goldstein L, Kleinzeller A (1987) Cell volume regulation in lower vertebrates. In: Gilles R, Bolis L, Kleinzeller A (eds) Current topics in membranes and transport, vol 30. Cell volume control: fundamental and comparative aspects in animal cells. Academic Press, San Diego, pp 181–204

    Google Scholar 

  132. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Google Scholar 

  133. McDowell ME, Wolf AV, Steer A (1955) Osmotic volumes of distribution: idiogenic changes in osmotic pressure associted with administration of hypertonic solutions. Am J Physiol 180:545–558

    Google Scholar 

  134. Pollock AS, Arieff AI (1980) Abnormalities of cell volume regulation and their functional consequences. Am J Physiol 239: F195-F205

    Google Scholar 

  135. Lohr JW, McReynolds J, Grimaldi T, Acara M (1988) Effect of acute and chronic hypernatremia on myoinositol and sorbitol concentration in rat brain. Life Sci 43:271–276

    Google Scholar 

  136. Law RO (1987) The volume and ionic composition of cells in incubated slices of rat renal cortex, medulla and papilla. Biochem Biophys Acta 931:276–285

    Google Scholar 

  137. Garcia-Perez A, Burg MB (1991) Role of organic osmolytes in adaptation of renal cells to high osmolality. J Membr Biol 119: 1–13

    Google Scholar 

  138. Yancey PH, Haner RG, Freudenberger TH (1990) Effects of an aldose reductase inhibitor on organic osmotic effectors in rat renal medulla. Am J Physiol 259:F733-F738

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linshaw, M.A. Selected aspects of cell volume control in renal cortical and medullary tissue. Pediatr Nephrol 5, 653–665 (1991). https://doi.org/10.1007/BF00856662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00856662

Key words

Navigation