Skip to main content
Log in

Friction of polymeric materials. 4. effect of temperature and relative sliding velocity on the coefficient of friction of flastomers

  • Published:
Polymer Mechanics Aims and scope

Abstract

The relationship between the coefficient of friction of elastomers and the temperature and sliding velocity has been calculated for various specific pressures on the assumption that the frictional force is low and that heating up of the surface of the bodies rubbing against each other can be neglected. Qualitative agreement with experimental results was obtained. The changes in the coefficient of friction observed are explained in terms of the temperature dependence of the volumetric properties of the elastomer, Young's modulus, and the shearing strength. A formula is proposed for calculating the rate of deformation of the material in the contact zone, which depends on the radius of curvature of the hump and the sliding velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. S. B. Ainbinder, Mekhan. Polim., No. 4, 654 (1972).

  2. S. B. Ainbinder, A. Ya. Loginova, and É. L. Tyunina, Mekhan. Polim., No. 5, 809 (1972).

  3. S. B. Ainbinder and É. L. Tyunina, Mekhan. Polim., No. 5, 843 (1974).

  4. F. Rot, R. Driskoll, and V. Kholt, Prikl., Mekh. i Mashinostr., No. 6, 62 (1952).

  5. G. M. Bartenev and V. V. Lavrent'ev, Friction and Wear in Polymers [in Russian], Leningrad (1972).

  6. K. Grosch, Proc. Roy. Soc.,A274, 1356, 21 (1963).

    Google Scholar 

  7. K. Grosch, Nature,197, 858 (1963).

    Google Scholar 

  8. K. G. McLaren and D. Tabor, Nature,197, 856 (1963).

    Google Scholar 

  9. A. I. El'kin, "Frictional properties of polymers at high and low temperatures," Doctoral, Dissertation, Moscow (1969).

    Google Scholar 

  10. G. M. Bartenev, Dokl. Akad. Nauk SSSR,103, 1017 (1955).

    Google Scholar 

  11. A. Schallamach, Proc. Phys. Soc.,B66, 5, 401, 386 (1953).

    Google Scholar 

  12. A. Schallamach, Wear,6, No. 5, 375 (1963).

    Google Scholar 

  13. A. A. Berlin and V. S. Basin, Fundamentals of Polymer Adhesion [in Russian], Moscow (1969).

  14. G. V. Vinogradov, A. I. Jel'kin, G. M. Bartenev, and S. Z. Bubman, Wear,23, 33 (1973).

    Google Scholar 

  15. R. Lendel and R. Fedors in: Breakdown of Solid Polymers [in Russian], Moscow (1971), p. 286.

  16. T. L. Smith, SPE J.,16, 1211 (1960).

    Google Scholar 

  17. A. Tobol'skii, Properties and Structure of Polymers [in Russian], Moscow (1964).

  18. L. R. Treloar, Physics of Rubber Elasticity, Oxford University Press (1958).

  19. A. Dinnik, Izbr. Tr. T. l. Kiev (1972).

  20. L. I. Sedov, Similarity and Dimensional Methods in Mechanics [in Russian], Moscow (1972).

  21. R. R. Myers, J. Polym. Sci.,35, 3 (1971).

    Google Scholar 

  22. O. D. Ferry, Viscoelastic Properties of Polymers, 2nd ed., Wiley (1970).

  23. H. J. Gibbs and Di Marzio, J. Chem. Phys.,28, 373 (1958).

    Google Scholar 

Download references

Authors

Additional information

For Communication 3, see [3].

Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 6, pp. 1050–1057, November–December, 1974.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ainbinder, S.B., Tyunina, E.L. Friction of polymeric materials. 4. effect of temperature and relative sliding velocity on the coefficient of friction of flastomers. Polymer Mechanics 10, 905–910 (1974). https://doi.org/10.1007/BF00856240

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00856240

Keywords

Navigation