Skip to main content
Log in

Beneficial effects of felodipine on myocardial and coronary function during low-flow ischemia and reperfusion

  • Coronary Artery Disease and Ischemia
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

An acute coronary occlusion causes severe lowflow ischemia in the occluded region. Calcium antagonists have the potential to reduce the rate of ischemic injury by decreasing myocardial oxygen demand, as well as by other mechanisms, especially when given prior to the onset of ischemia. However, their clinical use may be limited by their negative inotropic effects. The purpose of this study was to assess the effects of felodipine as a potentially protective agent against myocardial ischemia and reperfusion injury, independent of any negative inotropic actions, when given after the onset of low-flow ischemia. Isolated isovolumic (balloon-in-LV), blood-perfused rabbit hearts, paced at a constant heart rate, were subjected to 90 minutes of low-flow ischemia at a coronary perfusion pressure of 10 mmHg, which reduced coronary blood flow to 22–24% of baseline. After 15 minutes of low-flow ischemia, hearts received 2 × 10-6 M felodipine (n=7) or no drug (controls, n=8). Felodipine was given until 15 minutes of reperfusion. During lowflow ischemia both groups of hearts had identical coronary blood flow, heart rate, left ventricular (LV) developed pressure, lactate production, and O2 consumption. However, felo-dipine markedly protected against ischemic diastolic dysfunction. At the end of low-flow ischemia, LV end-diastolic pressure (LVEDP) had increased from 10±1 to 28±5 mmHg in the felodipine group, while in the controls LVEDP increased to 48±8 mmHg (p<0.05). During 30 minutes of reperfusion, felodipine had a beneficial effect upon coronary blood flow (initial postischemic hyperemia 245±38% of baseline in the felodipine group vs. 124±18% in the controls; p<0.01) Felodipine markedly improved the recovery of contractile function [LV developed pressure recovered from a baseline of 104±4 to 75±6 mmHg (72%) in the felodipine group vs. 34±10 mmHg (32%) in the control group; p<0.01], as well as diastolic function (LVEDP=25±4 mmHg in the felodipine group vs. 61±10 mmHg in the controls; p<0.05), and ATP levels (8.5±1.4 μmoles/g d.w. in the felodipine group vs. 3.9±1.4 μmoles/g d.w. in the control group, p<0.05). Felodipine, given after the onset of low-flow ischemia, protects the myocardium during both ischemia and reperfusion by mechanisms other than reducing myocardial oxygen demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction.N Engl J Med 1992;327:1825–1831.

    PubMed  Google Scholar 

  2. Culling W, Ruttley MSM, Sheridan DJ. Acute hemodynamic effects of felodipine during beta blockage in pationts with coronary artery disease.Br Heart J 1984;52:431–434.

    PubMed  Google Scholar 

  3. Pettersson K, Noble MIM, Bjorkman JA, Hynd J, Drake-Holland AJ. The positive inotropic effect of felodipine in isovolumically beating dog heart.J Cardiovase Pharmacol 1987;10 (Suppl 1):S112-S118.

    Google Scholar 

  4. Drake-Holland AJ, Pugh S, Mills C, Noble MIM. The effects of felodipine on left ventricular function in betablocked patients.Drugs 1987;34(Suppl 3):85–86.

    PubMed  Google Scholar 

  5. Cheng CP, Noda T, Little WC. Comparison of effects of dihydropyridine calcium antagonists on left ventricular systolic and diastolic performance.J Pharmacol Exp Ther 1994;268:1232–1241.

    PubMed  Google Scholar 

  6. Cheng CP, Pettersson K, Little WC. Effects of felodipine on left ventricular systolic and diastolic performance in congestive heart fallure.J Pharmacol Exp Ther 1994:271: 1409–1417.

    PubMed  Google Scholar 

  7. Cheng CP, Igarachi J, Pettersson K, Little WC. Effect of felodipine on left ventricular performance in conscious dogs: Assessment by left ventricular pressure-volume analysis.J Pharmacol Exp Ther 1991:257:163–169.

    PubMed  Google Scholar 

  8. Verdouw PD, Wolffenbuttel BHR. The effect of felodipine on ventricular fibrillation after coronary artery ligation in the anesthetized pig.Br J Pharmacol 1983;79:6–8.

    PubMed  Google Scholar 

  9. Muir AL, Wathen CG, Elvelin L. Effects of felodipine and nifedipine on left ventricular performance in hypertensive patients.Curr Ther Res 1992;52:677–680.

    Google Scholar 

  10. Eberll FR, Weinberg EO, Grice WN, Horowitz GL, Apstein CS. Protective effect of increased glycolytie substrate against systolic and diastolic dysfunction and increased coronary resistance from prolonged global underperfusion and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions.Cir Res 1991;68:466–481.

    Google Scholar 

  11. Marshall RC, Zhang DY. Correlation of contractile dysfunction with oxidative energy production and tissue high energy phosphate stores during partial coronary flow disruption in rabbit heart.J Clin Invest 1988;82:86–95.

    PubMed  Google Scholar 

  12. Apstein CS, Mueller M, Hood WB Jr. Ventricular contracture and compliance changes with global ischemia and reperfusion, and their effect on coronary resistance in the rat.Circ Res 1977;41:206–217.

    PubMed  Google Scholar 

  13. Adams H. Adenosine 5′-triphosphate, determination with phosphoglycerate kinase. In: Bergmeyer HV, ed.Methods of Enzymatic Analysis. New York: Academic Press 1963: 539–634.

    Google Scholar 

  14. Ljung B. Vascular selectivity of felodipine.Drugs 1985; 29(Suppl 2):46–58.

    PubMed  Google Scholar 

  15. Lindbom L, Persson MG, Öhlén A, Borgström P, Gustafsson D. Effects of felodipine on microvascular resting tone and responses to nerve stimulation and perfusion pressure reduction in rabbit skeletal muscle.J Cardiovase Pharmacol 1990;15:592–597.

    Google Scholar 

  16. Snedocor GW, Cochran WG. Two-way classifications. In: ed.Stutistical Methods. Ames, IA: Iowa State University Press, 1968:299–301.

    Google Scholar 

  17. De Jong JW, Huizwer T. Reduced glycolysis by nisoldipine treatment of ischemic heart.J Cardiovasc Pharmacol 1985; 7:497–500.

    PubMed  Google Scholar 

  18. De Jong JW. Timely administration of nisoldipine essential for prevention of myocardial ATP catabolism.Eur J Pharmacol 1985;11:53–59.

    Google Scholar 

  19. Watts JA, Maiorano LJ, Maiorano PC. Comparison of the protective effects of verapamil, diltiazem, nifedlpine and buffer containing low calcium upon global myocardial ischemic injury.J Mol Cell Cardiol 1986;18:255–268.

    PubMed  Google Scholar 

  20. Nayler WG. Amlodipine pretreatment and the ischemic heart.Am J Cardiol 1989;64:65–70.

    Google Scholar 

  21. Naylor WG, Liu J, Panagiotopoulos S. Nifedipine and experimental cardioprotection.Cardiovase Drugs Ther 1990; 4:879–886.

    Google Scholar 

  22. Nayler WG. Cardioprotective effects of calcium ion antagonists on myocardial ischemia.Clin Invest Med 1980;3:91.

    PubMed  Google Scholar 

  23. Bourdillon PD, Poole-Wilson PA. The effects of verapamil, quiescence and cardioplegia on calcium exchange and mechanical function in ischemic rabbit myocardium.Circ Res 1982;50:360–368.

    PubMed  Google Scholar 

  24. Ferrari R, Albertini A, Curello S, et al. Myocardial recovery during post-ischemic reperfusion: Effects of nifedipine, calcium and magnesium.J Mol Cell Cardiol 1986;18: 487–498.

    PubMed  Google Scholar 

  25. van Amsterdam FT, Punt NC, Hass M, Zaagsma J. Calcium antagonists show two modes of pretection in ischemic heart failure.J Pharmacol Exp Ther 1990;258:277–283.

    Google Scholar 

  26. Brown PS, Parenteau GL, Holland FW, Clark RE. Pretreatment with nicardipine preserves ventricular function after hypothermic ischemic arrest.An Thorac Surg 1991; 51:739–746.

    Google Scholar 

  27. Naylor WG. Basic mechanisms involved in the protection of the ischaemic myocardium, the role of calcium antagonists.Drugs 1991;42(Suppl 2):21–27.

    PubMed  Google Scholar 

  28. Heusch G. Myocardial stunning: A role for calcium antagonists during ischaemia?Cardiovase Res 1992;26:14–19.

    Google Scholar 

  29. Fleckenstein A. Calcium antagonism in heart and smooth muscle. In: ed.Experimental Facts and Therapeutic Prospects. New York: John Wiley, 1983.

    Google Scholar 

  30. Watts JA, Koch CD, La Noue KF. Effects of Ca2+ antagonism on energy metabolism: Ca2+ and heart function after ischemia. Am J Physiol 1980;238:H909-H916.

    PubMed  Google Scholar 

  31. Amende I, Bentivegna LA, Zeind AJ, Wenzlaff P, Grossman W, Morgan JP. Intracellular calcium and ventricular function. Effects of nisoldipine on global ischemia in the isovolumic, coronary perfused heart.J Clin Invest 1992;89: 2060–2065.

    PubMed  Google Scholar 

  32. Bersohn MM, Shine KI. Verapamil protection of ischemic isolated rabbit heart: Dependence on pretreatment.J Mol Cell Cardiol 1983;15:659–671.

    PubMed  Google Scholar 

  33. Higgins AJ, Blackburn KJ. Prevention of reperfusion damage in working rat hearts by calcium antagonists and calmodulin antagonists.J Mol Cell Cardiol 1984;16:427–438.

    PubMed  Google Scholar 

  34. Opie LH. Myocardial stunning: A role for calcium antagonists during reperfusion?Cardiovase Res 1992;26:20–24.

    Google Scholar 

  35. Kirkels JH, Ruigrok TJC, Van Echteld CJA, Meijler FL. Protective effect of pretreatment with calcium antagonist anipamil on the ischemic-reperfused rat myocardium: A phosphorus-31 nuclear magnetic reasonance study.J Am Coll Cardiol 1988;11:1087–1093.

    PubMed  Google Scholar 

  36. Lazdunski M, Frelin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacolacological properties and its role in regulating internal concentrations of sodium and internal pH.J Mol Cell Cardiol 1985;17:1029–1048.

    PubMed  Google Scholar 

  37. Weglicki WB, Mak IT, Simic MA. Mechanisms of cardiovascular drugs as antioxidants.J Mol Cell Cardiol 1990;23: 1199–1208.

    Google Scholar 

  38. Shridi F, Robak J. The influence of calcium channel blockers on superozide anions.Pharmacol Res Commun 1988;20: 13–31.

    PubMed  Google Scholar 

  39. Janero DR, Burghardt B, Lopez R. Protection of cardiae membrane phospholipid against oxidative injury by calcium antagonists.Biochem Pharmacol 1988;37:4197–4203.

    PubMed  Google Scholar 

  40. Koller Pt, Bergmann SR. Reduction of lipid peroxidation in reperfused isolated rabbit hearts by diltiazem.Circ Res 1989;65:838–846.

    PubMed  Google Scholar 

  41. Mak IT, Weglicki WB. Comparative antioxidant activities of propranolol, nifedipine, verapamil, and diltiazem against sarcolemmal membrane lipid peroxidation.Circ Res 1990; 66:1449–1452.

    PubMed  Google Scholar 

  42. Janero DR, Burghardt B. Antiperoxidant effects of dihydropyridine calcium antagonists.Biochem Pharmacol 1989; 38:4344–4348.

    PubMed  Google Scholar 

  43. Bostrom SL, Ljung B, Mardh S, Forsen S, Thulin E. Interaction of the antihypertensive drug felodipine with calmodulin.Nature 1981;292:777–778.

    PubMed  Google Scholar 

  44. Verdouw PD, Wolffenbuttel BHR, Scheffer MG. Cardiovascular actions of the calmodulin inhibitor felodipine.Arch Pharmacol 1983;323:350–354.

    Google Scholar 

  45. Walsh MP, Sutherland C, Scott-Woo GC. Effects of felodipine (a dihydropyridine calcium channel blocker) and analogues on calmodulin-dependent enzymes.Biochem Pharmacol 1988;37:1569–1580.

    PubMed  Google Scholar 

  46. Boddeke HWGM, Wilffert B, Hugtenburg JG, Jap TJW, Veldaema-Currie RD, van Zwieten PA. Anti-ischaemic activity of various calmodulin antagonists.Pharmacology 1988;37:240–247.

    PubMed  Google Scholar 

  47. Silver PJ, Ambrose JM, Michalak RJ, Dachiw J. Effects of felodipine, nitrendipine and W-7 on arterial myosin phosphorylation, actin-myosin interactions and contraction.Eur J Pharmacol 1984;102:417–424.

    PubMed  Google Scholar 

  48. Bostrom SL, Westerlund C, Rochester S, Vogel HJ. Binding of a dihydropyridine feledipine-analogue to calmodulin and related calcium-binding proteins.Biochem Pharmacol 1988;37:3723–3728.

    PubMed  Google Scholar 

  49. Thayer SA, Fairhurst AS. The interaction of dihydropyridine calcium channel blockers with calmodulin and calmodulin inhibitors.Mol Pharmacol 1983;24:6–9.

    PubMed  Google Scholar 

  50. Barron E, Marshall RJ, Martorans M, Winslow E. Comparative antiarrhythmic and electrophysiological effects of drugs known to inhibit calmodulin (TFP, W7 and bepridil).Br J Pharmacol 1986;89:603–612.

    PubMed  Google Scholar 

  51. Shikano K, Kusagawa M, Itoh H, Hidaka H. Protective effects of the calmodulin antsgonist bepridil on ischaemia induced in the rat myocardium.Cardiovase Res 1986;20: 364–368.

    Google Scholar 

  52. Johnson DJ, Fugman DA. Calcium and calmodulin antagonists binding to calmodulin and relaxation of coronary segments.J Pharmacol Exp Ther 1983;226:330–334.

    PubMed  Google Scholar 

  53. Saltiel E, Ellrodt AG, Monk JP, Langley MS. Felodipine. A review of its pharmacolacodynamic and pharmacolacokinetic properties, and thoraneutic use in hypertension.Drugs 1988;36:387–428.

    PubMed  Google Scholar 

  54. Minocherhomjee AM, Roufogalis BD. Antagonism of calmodulin and phosphodiesterase by nifedipine and related calcium entry blockers.Cell Calcium 1984;5:57–63.

    PubMed  Google Scholar 

  55. Moysesian AM, Ambudkar IS, Adelstein RS, Shamoo AE. Stimulation of canine cardiac sacoplasmic reticulum calcium uptake by dihydropyridine calcium antagonists.Biochem Pharmacol 1985;34:195–201.

    PubMed  Google Scholar 

  56. Carafoll E. The homeostasis of calcium in the heart.J Mol Cell Cardiol 1985;17:203.

    PubMed  Google Scholar 

  57. Hugtenburg JG, Van Voorst MJD, Marle JV, et al. The influence of nifedipine and mioflazine on mitochondrial calcium overload in normoxic and ischemic guinea-pig hearts.Eur J Pharmacol 1990;178:71–78.

    PubMed  Google Scholar 

  58. van Amsterdam FT, Punt NG, Haas M, Zaagsma J. Stersofsomers of calcium antagonists distinguish a myocardial and vaseular mode of protection against eardiac ischemic injury.J Cardiovase Pharmacol 1990;15:198–204.

    Google Scholar 

  59. Braun S, Frey N, Herzig S, Hilbert C. Potentiation of cardiodepressive action among calcium antagonists from different classes: Evidence for a mechanism at the single calcium channel level.Arch Pharmacol 1992;345:586–593.

    Google Scholar 

  60. Ljung B. Vascular selectivity of felodipine: Experimental pharmacolacology.J Cardiovase Phermacol 1990;15(Suppl 4): S11-S16.

    Google Scholar 

  61. Flaim SF, Swigart SC, Gleason MM. Vasodilating effects of felodipine are selective for cell potential but independent of calcium influx in rabbit aorta smooth muscle (abstr).Circulation 1984;70(Suppl II):II238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernstein, E.A., Eberli, F.R., Silverman, A.M. et al. Beneficial effects of felodipine on myocardial and coronary function during low-flow ischemia and reperfusion. Cardiovasc Drug Ther 10, 167–178 (1996). https://doi.org/10.1007/BF00823595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00823595

Key words

Navigation