Skip to main content
Log in

The activation of FeTi for hydrogen absorption

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

FeTi is an interesting hydrogen storage material which has to be activated at ≈670 K for the absorption of hydrogen. We review critically the great number of previously published results and models on this activation process and emphasize the controversial points. To eliminate the controversy we analysed the variation of the surface composition of FeTi upon activation in the high-pressure cell of a photoelectron spectrometer. The initially passivating surface oxide is shown to be converted into a mixture of TiO2 and Fe by surface segregation and chemical reduction. No evidence for the formation of Fe2Ti4O x , FeTiO x , and TiH x is found. H2/D2 exchange reactions show that H2 dissociates rapidly on Fe and FeTi, but not on TiO2. The surface of FeTi is activated easily at 670 K. Difficulties encountered with the initial hydrogen absorption by virgin high purity FeTi are probably related to bulk (H diffusion, fracture toughness) rather than surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.G. Libowitz, G.D. Sandrock: Proc. Intern. Symp. “Properties and Applications of Metal Hydrides”. J. Less-Common Met.73/74 (1980)

  2. W.E. Wallace, T. Schober, S. Suda: Proc. Intern. Symp. “Properties and Applications of Metal Hydrides”. J. Less-Common Met.88/89 (1982)

  3. J.J. Reilly, R.H. Wiswall: Inorg. Chem.13, 218 (1974)

    Google Scholar 

  4. L. Schlapbach, A. Seiler. F. Stucki, P. Zürcher, P. Fischer, J. Schefer: Z. Phys. Chemie NF (Wiesbaden)117, 205 (1979)

    Google Scholar 

  5. L. Schlapbach, A. Seiler, F. Stucki, H.-C. Siegmann: J. Less-Common Met.73, 145 (1980)

    Google Scholar 

  6. M. Strongin, J. Colbert, G.J. Dienes, D.O. Welch: Phys. Rev. B26, 2715 (1982)

    Google Scholar 

  7. G.D. Sandrock, J.J. Reilly, J.R. Johnson: Proc. 11th Intersociety Energy Conversion and Engineering Conf., Stateline Nevada (1976) p. 965

  8. R.C. Bowman, W.E. Tadlock: Solid State Commun.32, 313 (1979)

    Google Scholar 

  9. R. Hempelmann. D. Richter, R. Pugliesi, L.A. Vinas: J. Phys. F13, 59 (1983)

    Google Scholar 

  10. JCPDS: Joint Committee on Powder Diffraction Standards

  11. T.F. Connolly, E.D. Copenhaver:Bibliography of Magnetic Materials (IFI/Plenum Press, New York 1972)

    Google Scholar 

  12. Landolt-Börnstein, Numerical Data II/9. 6th ed. (Springer, Berlin, Heidelberg, New York 1962)

    Google Scholar 

  13. Landolt-Börnstein, Numerical Data II/2, New Series (Springer, Berlin, Heidelberg, New York 1966)

    Google Scholar 

  14. Landolt-Börnstein, Numerical Data III/4a, New Series (Springer, Berlin, Heidelberg, New York 1970)

    Google Scholar 

  15. F. Ducastelle, R. Caudron, P. Costa: J. Phys. (Paris)31, 57 (1970)

    Google Scholar 

  16. F. Reidinger, J.F. Lynch, J.J. Reilly: J. Phys. F12, L49;13, 247 (1982)

    Google Scholar 

  17. F. Stucki: J. Less-Common Met.83, L37 (1982)

    Google Scholar 

  18. H. Berner, L. Schlapbach: Unpublished. From high field magnetisation meausrements the differential susceptibilitydM/dH of (7.5±1)×10−6emu/g was estimated for the bulk susceptibility of FeTiH1, assuming that the ferromagnetic surface precipitates are saturated (H>5 Tesla)

  19. G.K. Wertheim, J.H. Wernick, R.C. Sherwood: Solid State Commun.7, 1399 (1969)

    Google Scholar 

  20. T. Schober: J. Less-Common Met.89, 63 (1983)

    Google Scholar 

  21. J.J. Reilly, F. Reidinger: J. Less-Common. Met.85, 145 (1982)

    Google Scholar 

  22. T. Schober: Scripta Met.13, 107 (1979) and Report Jül-Spez-22, KFA Jülich (1978)

    Google Scholar 

  23. K. Hiebl, E. Tuscher, H. Bittner: Monatsh. Chemie110, 9 (1979)

    Google Scholar 

  24. T. Nagata: InHandbook of Physics, Vol. XLIX/1, ed. by S. Flügge (Springer, Berlin, Heidelberg, New York 1966) p. 248

    Google Scholar 

  25. H. Kato, M. Yamada, H. Yamauchi, H. Hiroyoshi, H. Takei, H. Watanabe: J. Phys. Soc. Jpn.51, 1769 (1982)

    Google Scholar 

  26. P.W. Readman, W. O'Reilly, S.K. Banerjee: Phys. Lett.25A, 446 (1967)

    Google Scholar 

  27. E. Schmidbauer, P.W. Readman: J. Magn. Mag. Mater.27, 114 (1982)

    Google Scholar 

  28. S. Muranaka, T. Shinjo, Y. Bando, T. Takada: J. Phys. Soc. Jpn.30, 890 (1971)

    Google Scholar 

  29. M. Drofenik, L. Golić, D. Hanzel, V. Krasevec, A. Prodan, M. Bakker, D. Kolar: J. Solid State Chem.40, 47 (1981)

    Google Scholar 

  30. E.G. Ponyatowsky, V.E. Antonow, I.T. Belash, V.F. Degtyareva, V.G. Thiessen: J. Less-Common Met.88, 26 (1982)

    Google Scholar 

  31. W.M. Mueller, J.P. Blackledge, G.G. Libowitz:Metal Hydrides (Academic Press, New York 1968)

    Google Scholar 

  32. R.P. Elliott:Constitution of Binary Alloys, First Suppl. (McGraw-Hill, New York 1965)

    Google Scholar 

  33. T. Lyman (ed.):Metals Handbook 8 (Am. Soc. for Metals 1973)

  34. W. Rostoker: Trans. AIME194, 209 (1952)

    Google Scholar 

  35. A. Seibold: Z. Metallkde.72, 712 (1981)

    Google Scholar 

  36. W. Rostoker: Trans. AIME203, 113 (1955)

    Google Scholar 

  37. D.J. Gillespie, G.N. Kamm, A.C. Ehrlich: Bull. Am. Phys. Soc.27, 162 (1982)

    Google Scholar 

  38. K. Ikeda, T. Nakamichi, M. Yamamoto: J. Phys. Soc. Jpn.37, 652 (1974)

    Google Scholar 

  39. J. Schefer, P. Fischer, W. Haelg, F. Stucki, L. Schlapbach, A.F. Andresen: Mater. Res. Bull.14, 1281 (1979)

    Google Scholar 

  40. R. Hempelmann, E. Wicke: Ber. Bunsenges. Phys. Chemie81, 425 (1977)

    Google Scholar 

  41. G. Hilscher, G. Wiesinger, R. Hempelmann: J. Phys. F11, 2161 (1981)

    Google Scholar 

  42. B. Rupp: To be published

  43. R.S. Carmichael:Handbook of Physical Properties of Rocks, Vol. II (CRC Press, Boca Raton, Fl 1982)

    Google Scholar 

  44. B.J. Tatarchuk, J.A. Dumesic: J. Catalysis70, 308, 323, 335 (1981)

    Google Scholar 

  45. M. Ron, R.S. Oswald, M. Ohring, G.M. Rothberg, M.R. Polcari: Bull. Am. Phys. Soc.21, 273 (1976)

    Google Scholar 

  46. R.C. Bowman, G.C. Carter, Y. Chabre: 2nd Intern. Cong. on Hydrogen in Metals, Paris (1977) 1F12

  47. F. Stucki, L. Schlapbach: J. Less-Common Met.74, 143 (1980)

    Google Scholar 

  48. F. Stucki: Ph.D. Thesis No.6835, ETH-Zürich (1981)

  49. J. Genossar, P.S. Rudmann: Z. Phys. Chemie NF (Wiesbaden)116, 215 (1979)

    Google Scholar 

  50. G.D. Sandrock, P.D. Goodell: J. Less-Common Met.73, 161 (1980)

    Google Scholar 

  51. G.K. Shenoy, D. Niarchos, P.J. Viccaro, B.D. Dunlap, A.T. Aldred, G.D. Sandrock: J. Less-Common Met.73, 171 (1980)

    Google Scholar 

  52. A. Blaesius, U. Gonser: Appl. Phys.22, 331 (1980)

    Google Scholar 

  53. N. Blaes: Diploma Thesis, Appl. Phys. Dept., University of the Saarland, D-6600 Saarbrücken, F. R. Germany (1981)

    Google Scholar 

  54. S.A. Stewart, F. Uribe, R.M. Alire: J. Less-Common Met.73, 169 (1980)

    Google Scholar 

  55. M. Amano, Y. Sasaki: Proc. JIMIS 2, Trans. Jpn. Inst. Met. Suppl.21, 329 (1980)

    Google Scholar 

  56. D. Fruchart, M. Commandré, D. Sauvage, A. Rouault, R. Tellgren: J. Less-Common Met.74, 55 (1980)

    Google Scholar 

  57. M.H. Mintz, Z. Hadari, M.P. Dariel: J. Less-Common Met.74, 287 (1980)

    Google Scholar 

  58. C. Stioui, D. Fruchart, A. Rouault, R. Fruchart, E. Roudaut, J. Rebiére: Mater. Res. Bull.16, 869 (1981)

    Google Scholar 

  59. J.J. Reilly, J.R. Johnson, F. Reidinger, J.F. Lynch, J. Tanaka, R.H. Wiswall: J. Less-Common Met.73, 175 (1980)

    Google Scholar 

  60. C.S. Pande, M.A. Pick, R.L. Sabatini: Scr. Metall.14, 899 (1980)

    Google Scholar 

  61. D.G. Johnson, J.B. Pangborn: J. Less-Common Met.73, 127 (1980)

    Google Scholar 

  62. M.H. Mintz, S. Vaknin, S. Biderman, Z. Hadari: J. Appl. Phys.52, 463 (1981)

    Google Scholar 

  63. T. Sasai, K. Oku, H. Konno, K. Onouwe, S. Kashu: J. Less-Common Met.89, 281 (1983)

    Google Scholar 

  64. T. Matsumoto, M. Amano: Scr. Metall.15, 879 (1981)

    Google Scholar 

  65. Y. Sasaki, M. Amano: Proc. Miami Intern. Symp. on Metal-Hydrogen Systems (1981)

  66. D. Shaltiel, Th. von Waldkirch, F. Stucki, L. Schlapbach: J. Phys. F11, 471 (1981)

    Google Scholar 

  67. T. Schober, D.G. Westlake: Scr. Metall.15, 913 (1981)

    Google Scholar 

  68. Th. von Waldkirch, R. Wessiken, H.-U. Nissen, L. Schlapbach: 3rd Intern. Cong. on Hydrogen and Materials, Paris (1982) C9

  69. D. Kathamian, F.D. Manchester, G.C. Weatherly, C.B. Alcock: InElectronic Structure and Properties of Hydrogen in Metals, ed. by P. Jena, C.B. Satterthwaite (Plenum Press, New York 1983) p. 373

    Google Scholar 

  70. D. Kathamian, G.C. Weatherly, F.D. Manchester, C.B. Alcock: J. Less-Common Met.89, 71 (1983)

    Google Scholar 

  71. H. Züchner, U. Bilitewski, G. Kirch: J. Less-Common Met. (submitted)

  72. E. Hamer: Forschungsbericht aus der Wehrtechnik, BMVg-FBWT-80-6, F. R. Germany (1980)

  73. E. Hamer, W. Gerhard, C. Plog, R. Kaufmann: Fresenius Z. Anal. Chem.308, 287 (1981)

    Google Scholar 

  74. P.S. Rudman: J. Less-Common Met.89, 93 (1983)

    Google Scholar 

  75. T. Matsumoto, M. Amano, Y. Sasaki: J. Less-Common Met.88, 443 (1982)

    Google Scholar 

  76. T. Mizuno, T. Morozumi: J. Less-Common Met.84, 237 (1982)

    Google Scholar 

  77. M. Amano, Y. Sasaki, R. Watanabe, M. Shibata: J. Less-Common Met.89, 513 (1983)

    Google Scholar 

  78. A. Seiler, F. Stucki, P. Charpié: Solid State Commun.42, 337 (1982)

    Google Scholar 

  79. M. Polak, M. Hefetz, M.H. Mintz, M.P. Dariel: Proc. World Hydrogen Energy Conf. IV, Pasadena, CA (Pergamon Press, New York 1982)

    Google Scholar 

  80. M. Polak, M. Hefetz, M.H. Mintz, M.P. Dariel: Surf. Sci.126, 739 (1983)

    Google Scholar 

  81. T.E. Felter, S.A. Stewart, F.S. Uribe: Surf. Sci,122, 69 (1982)

    Google Scholar 

  82. G. Sicking, B. Jungblut: Surf. Sci.127, 255 (1983)

    Google Scholar 

  83. M.E. Malinowski: J. Vac. Sci. Technol.15, 39 (1978)

    Google Scholar 

  84. L.I. Johansson, A.L. Hagström, B.E. Jacobson, S.B. Hagström: J. Electron Spectrosc.10, 259 (1977)

    Google Scholar 

  85. A.S. Pederson, P.J. Møller, O.T. Sørensen: Ber. Bunsenges. Phys. Chem.87, 104 (1983)

    Google Scholar 

  86. J.-Y. Lee, C.N. Park, S.M. Pyun: J. Less-Common Met.89, 163 (1983)

    Google Scholar 

  87. C.R. Brundle, T.J. Chuang, K. Wandelt: Surf. Sci.68, 459 (1977)

    Google Scholar 

  88. C.N. Sayers, N.R. Armstrong: Surf. Sci.77, 301 (1978)

    Google Scholar 

  89. T.K. Sham, M.S. Lazarus: Chem. Phys. Lett.68, 426 (1979)

    Google Scholar 

  90. J.H. Scofield: J. Electron. Spectrosc.8, 129 (1976)

    Google Scholar 

  91. M. Oku, K. Hirokawa: J. Appl. Phys.50, 6303 (1979)

    Google Scholar 

  92. R.K. Quinn, N.R. Armstrong: J. Electrochem. Soc.125, 1790 (1978)

    Google Scholar 

  93. B.C. Lamartine, T.W. Haas, J.S. Solmon: Appl. Surf. Sci.4, 537 (1980)

    Google Scholar 

  94. S. Thomas: Surf. Sci.55, 754 (1976)

    Google Scholar 

  95. D.A. King, D.P. Woodruff (eds.):The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis 4 (Elsevier, Amsterdam 1982)

    Google Scholar 

  96. V.E. Henrich: Prog. Surf. Sci.9, ed. by S.G. Davison (Pergamon Press, New York 1979) p. 143

    Google Scholar 

  97. R. Burch: Chem. Phys. of Solids and Their Surfaces8 (Royal Soc. of Chem., London 1980) p. 1

    Google Scholar 

  98. CM. Varma, A.J. Wilson: Phys. Rev. B22, 3795 (1980)

    Google Scholar 

  99. F. Boszo, G. Ertl, M. Grunze, M. Weiss: Appl. Surf. Sci.1, 103 (1977)

    Google Scholar 

  100. J.C. Cavalier, E. Chornet: Surf. Sci.60, 125 (1976)

    Google Scholar 

  101. M. Boudart: Catal. Rev.-Sci. Eng.23, 1 (1981)

    Google Scholar 

  102. G. Ertl, M. Huber, S.B. Lee, Z. Paal, M. Weiss: Appl. Surf. Sci.8, 373 (1981)

    Google Scholar 

  103. N.D. Spencer, R.C. Schoonmaker, C.A. Somorjai: J. Catalysis74, 129 (1982)

    Google Scholar 

  104. P. Cremaschi, J.L. Witten: Phys. Rev. Lett.46, 1242 (1981)

    Google Scholar 

  105. R.D. Shannon: J. Appl. Phys.35, 3414 (1964)

    Google Scholar 

  106. E. Serwicka, R.N. Schindler, R. Schumacher: Ber. Bunsenges. phys. Chemie85, 192 (1981)

    Google Scholar 

  107. M.L. Knotek: Surf. Sci.91, L17 (1980)

    Google Scholar 

  108. W.J. Lo, Y.W. Chung, G.A. Somorjai: Surf. Sci.71, 199 (1978)

    Google Scholar 

  109. J.C. Conesa, J. Sorla: J. Phys. Chem.86, 1392 (1982)

    Google Scholar 

  110. T.M. Apple, P. Gajardo, C. Dybowski: J. Catalysis68, 103 (1981)

    Google Scholar 

  111. J.H. Weaver, D.T. Peterson: Phys. Rev. B22, 3624 (1980)

    Google Scholar 

  112. M. Gupta: Phys. Lett.88A, 469 (1982)

    Google Scholar 

  113. J.B. Bates, J.C. Wang, R.A. Perkins: Phys. Rev. B19, 4130 (1979)

    Google Scholar 

  114. O.W. Johnson, S.H. Paek, J.W. DeFord: J. Appl. Phys.46, 1026 (1975)

    Google Scholar 

  115. V.E. Henrich, R.L. Kurtz: Phys. Rev. B23, 6280 (1981)

    Google Scholar 

  116. J. Schefer, P. Fischer, L. Schlapbach, J.J. Reilly: AF-SSP-118, Progress Rep. on Neutron Diffraction (Inst. for Reactortech., CH-5303 Würenlingen 1982) p. 55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To Prof. G. Busch, who initiated metal hydride research at ETH, on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlapbach, L., Riesterer, T. The activation of FeTi for hydrogen absorption. Appl. Phys. A 32, 169–182 (1983). https://doi.org/10.1007/BF00820257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00820257

PACS

Navigation